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Abstract. We show that the pressure of the Bogoliubov weakly imperfect Bose gas (WIBG)
can be calculated exactly in the thermodynamic limit. We point out the sufficient and necessary
conditions for it not to equate with the pressure of the ideal Bose gas (IBG). We prove that
they differ only in that part of the phase diagram where the WIBG has a Bose condensate. We
show that in contast to the conventional Bose condensate (e.g. in the IBG) the condensate in the
WIBG is due to an effective attraction between bosons in the zero-mode.

1. Introduction and set-up of the problem

A pragmatic procedure for the description of the properties of superfluids, e.g. derivation
of the experimentally observed spectra, was initiated in Bogoliubov's classic paper [1] (see
also [2]), where he considered a Hamiltonian witlincated interactiongiving rise to what
is called the Bogoliubov Hamiltonian forweakly imperfect Bose gg$VIBG).

Consider a system of bosons of masin a cubic boxA ¢ R3 of volumeV = L3, with
periodic boundary conditions. If(x) denotes an integrable two-body interaction potential
and

v(g) =/ d¥xe (x)e'e g eR® (1.2)
RS
then its second-quantized Hamiltonian acting in the boson Fock spa@an be written as
* 1 * *
Hy = Zakakak + oy Z V(@) g gy — g Oy Oy (1.2)
k ku.kz.q

where all sums run over the sat defined by

27N,

A = {k eR:a=1223k, = andn, = 0, £1, j:Z,...} . @3

Here ¢, = h%k?/2m is the one-particle energy spectrum of the free bosons, adne:

{af, a;} are the usual boson creation and annihilation operators in the one-particle state
Yr(x) = V72é k€ A%, x € A; af = a*(Yi) = [ Adxyy (x)a*(x); a¥(x) are the
basic boson operators in the Fock spaEg over L2(A). If one supposes that Bose—
Einstein condensation, which occurs in the ideal Bose gas fer0, persists for a weak
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interactiong(x) then, according to Bogoliubov, the most important terms in (1.2) should
be those in which at least two operates§ ao appear. We are thus led to consider the
following truncatedHamiltonian (the Bogoliubov Hamiltonian for WIBG: see [2], part 3.5,
equation (3.81)):

HY =Ty +UY + Uy (1.4)
where
Tp = Z sxajag (1.5)
keA*
v(0) 1 v(0) ..
Ul = 7ag;aok Z aja+ o Z v(kyagao(aiay +a’a ) + o -agag  (1.6)
eA* k#0 ke A* k#0
1
Ur = % ‘ Z ”(k)(a;i‘aikaé + “Szaka*k)' 1.7
eA* k#0

HEDP = (T + UP) represents thdiagonal part of the Bogoliubov Hamiltoniai/ ? while
U, represents thaon-diagonalpart.

Remark 1.1Below we impose the following assumptions on the two-body interaction
potentialg:

(A) ¢ € LY(R®) (absolute integrability);

(B) v(k) is a real continuous function, satisfying0) > 0 and 0< v(k) = v(—k) < v(0)
for k e R3.

It is known [3, 4] that under these (and in fact, even weaker) conditions the potential
¢ is superstable. Hence the grand-canonical partition function associated with the full
Hamiltonian (1.2)

Ea(B, 1) = Try, (e7PHA=1NW) (1.8)
and the finite-volume pressure
1
palHAl = pa(B, 1) = BV InEA (B, 1) (1.9)

are finite for all real chemical potentials and all inverse temperaturgs> 0.
However, this isnot true for the Bogoliubov Hamiltonian (1.4).

Proposition 1.2.[5] Let E% (8, 1) be the grand-canonical partition function associated with
the Hamiltonian (1.4). Then,

(@) the Bogoliubov model of WIBG is stable€f (8, ) < +o0) for u < 0 and is
unstable (i.eE2(8, u) = +o0) for u > 0.

(b) Forpu < u* = —3¢(0) the pressure

pP(B. ) =lim pa[H{] (1.10)
coincides with the pressure of the ideal Bose gas (IBG)
p' (B, ) =lim pa[T4]. (1.11)

A simple proof of (a) follows from estimates (2.6) and (2.10) below. For the proof of
(b) see remark 2.4 and corollary 2.5. Moreover, paper [5] contains the following conjecture.

Conijecture 1.3The Bogoliubov Hamiltoniarf ? is exactly soluble in the sense that WIBG
is thermodynamically equivalent (in the grand-canonical ensemble) to the IBG for all
chemical potentialk < 0. This precisely means that

pP(B.u<0) =p'(B. u<O). (1.12)
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The aim of this paper is threefold. First, to show that the phase diagram of the
Bogoliubov model (1.4) is less trivial than as expressed by conjecture 1.3 and that it
drastically depends on the interaction potential (1.1); secondly, to find necessary and
sufficient conditions for the interaction which guarantee that WIBG differs from IBG; and
thirdly, to calculate exactly?® (8, 1) in the domain where it does not coincide wjth(8, ).

Our results are organized as follows. In section 2, we show that

pPPB <0 = lim PalHZP1 = p'(B.n < 0) (1.13)

that is, the thermodynamics of tltagonal part of the Bogoliubov Hamiltonian and that
of the ideal Bose gas coincide, while the Bose condensation is closergeneralized
condensation see [6, 7], which occurs at # 0. This means in particular that the
thermodynamiaon-equivalencdetween the Bogoliubov Hamiltonian and the IBG is due
to non-diagonalterms of interaction (1.7). We also study conjecture 1.3. We show that for
any interaction which satisfies (A) and (B) there is a domaiof the phase diagram (plane

Q0 =(u<0,0=p"1>0)where indeed

PP, <0 =p' (B, pu<0). (1.14)

We then formulate a sufficient condition on the interactiof) to ensure the existence of
domainDg C Q where

pE(B. ) # p' (B, ). (1.15)

In fact we show that this is equivalent to the statement that the sy&tEmanifests in this
domain a fon-conventiondlBose condensation due &ffective attractiorbetween bosons
with k = 0.

The thermodynamic limit of the pressure (1.10) of the systfhin domainD 2 Dy
defined by

pPB ) #p' (B, ) (1.16)

is studied in section 3. We give an exact formula (8, 1), demonstrating its relation to
the concept of the Bogoliubov approximation as outlined by Ginibre [4]. By corollary we
establish thath = Dg. In section 4 we study the breaking of the gauge symmetry and the
behaviour of therfon-conventiondlBose condensate, i.e. the phase diagram of the WIBG.
We reserve section 5 for concluding remarks and discussions.

2. Bogoliubov weakly imperfect Bose gas versus ideal Bose gas

2.1. Diagonal part of the Bogoliubov Hamiltonian

The diagonal part of the Bogoliubov Hamiltonidh?? = (T, + UP), as in (1.5) and (1.6),
can be rewritten using the occupation-number operators for modea™, ny = aja;. So,
the HamiltonianH 2P (1) = HEP — uN, becomes

v(0)
HEP () = Z(Ek — mwagax + 7“3610 Z aga
kenr keA" k0

1 . N N v(0) ..
+ﬁ k Z v(k)agao(ajar +a*a_y) + Wao acz, (2.1)
eA* k40
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whereN, = Y, .- afax. If v(k) satisfies (B), then one obviously obtains

v(0) v(0)

1
HYPGo = ) (e — i+ —=noNa = 5§ +n0) + - 3 v@none (2.2)

keA* keA* k#0
> Ta(p) = Ta — WN,. (2.3)

Theorem 2.1Let v(k) satisfy (A) and (B). Then
(a) for anyu < 0 andg > 0 one has

PP (B, w) = lim pa[HZ] = p' (B, ) 2.4)
(b) for any 8 > 0 one has
pPP (B, 1 > 0) = +o0.

Proof. (a) By virtue of expression (2.2) and the inequality (2.3) we find that the partition
function

EﬁD(,B, W) = TI’_7:A e*ﬂHffD(ﬂ) < TI’}-A e ATa(w) — Ef\(ﬂ, 0.
Hence, for anyu < 0

palHYP] < palTal. (2.5)
By (2.2), we can calculate F{ on the basis of occupation-number operators:

o0
~BD _ —BCSD (n3—no)—uno)] d—Ble—pt OB g}y 1
EX (M)—Z{e[ 2 [] a- vl
10=0 keA* k0

which gives the estimate
EiD(ﬁ’ M) 2 1_[ (1 _ e[_ﬂ(gk_/‘v)])_l'
keA* k0
Therefore,
- 1 B(er—i)]n—
PAlHRP1Z pyBon = oo D Inf@—e-Fermh, (2.6)
p keA*,k£0
Note thatp, (8, u) is the pressure of an ideal Bose gas wétkcludedmodek = 0 and
Ph(B, ) < +oo for u < infrsoer. Hence, for anyw < 0 one gets
lim 53 (B, 1) = lim pA[Ta] = p' (B, 1). 2.7)

Therefore, taking the thermodynamic limits as in (2.5)—(2.7) we first solve (2.4) fer0.
Then taking limitu — 0~ one solves (2.4) fop = 0.
(b) is proved directly from estimate (2.6). O

Corollary 2.2. Since functiong p22 (8, 1) = pa[HEP]}xcre are convex fo < 0 and the
limit p’ (B, n) is differentiable foru < 0, by Griffiths’ lemma [8]

lim 3. P8P (B, W) = 8,p" (B, )

i.e. the particle density of the system (2.1) coincides with that of the IBG:

. [N

PP (B, ) = lim <7> B, ) = 0,0 (B, 11) = p" (B, ). (2:8)
HED

Here (—)n, (B, 1) corresponds to the grand-canonical Gibbs state for Hamiltofgn

Taking in (2.8) the limity — 0~ we extend this equality tp € (—o0, O].
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From (2.4) and (2.8) we see that the diagonal part of the Bogoliubov Hamiltdnfgh
is thermodynamically equivalent td,. A generalized Bose condensatiam the system
(2.1) coincides with that for the ideal Bose gas with excluded nioeeO, [6, 7]. Below
we show that it is thenon-diagonalinteraction (1.7) that makes the essential difference
between WIBG and IBG.

2.2. Domainr: p®(B, w) = p' (B, w)

As with IBG, the Bogoliubov WIBG exists only for < 0 (see proposition 1.2). In fact
we can go further (cf [5]).

Lemma 2.3For anyu < 0, one has

p' B, ) < pP (B, w). (2.9)

Proof. By the Bogoliubov inequality (see e.g. [3, 9]), one knows that for ang O,
1 1
7 (Unlug < PALHR®] = PALHXT < 3 (Un) mpo- (2.10)
Since %(UA)HA;D = 0, combining (2.6), (2.7) and (2.10) we obtain (2.9) in the

thermodynamic limit by the continuous extensien— 0~ of p/(8, u) for u < 0. O

Remark 2.4Let v(k) satisfy (A) and (B). Then regrouping terms in (1.6), (1.7) one gets

1 -
Hf =Hy+ == Y vk)(@a +a* ao) (ajar + a* yao) > Hy (2.12)
2v keA*,k#£0
where
- v(k)  v(0) v , 1
Hy, = (Sk - — 4+ —I’lo) ng + —— 0 - —(p(O)no (212)
kez\;;eo 2V \%4 2V
Hence, by (2.11) and (2.12) we obtain in the thermodynamic limitufet 0
pP(B. 1) < <lim palHA] = SulgG(ﬂ I3 £0)- (2.13)
po=
Here
G(B. ; po) = [ (2),05 + (1 + 300)po+ p' (B 1 — v(O)po)} . (2.14)

Corollary 2.5.[5] If 1 < —3¢(0), then sup.oG(B, i; po) = p'(B, ). Therefore, by
lemma 2.3 and inequality (2.13 ) we get

pPB.w)=p' (B forTy, =6 >0, u < —30(0) = p.}. (2.15)
The next statement extends the domEjp, (see figure 1) of proposition 1.2.
Theorem 2.6Let v(k) satisfy (A) and (B) and let

h(z, ) =z + (';f))s ; o’k (Pl — 1)t (2.16)

Then we have

pP(B. ) = p'(B. 1) for (9, u) € T (2.17)
where

={©.1: 300 < inf nizp)fco. (2.18)
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r § re* or,

Figure 1. (1) Phase diagram of the Bogoliubov WIBG. (2) Estimation of the phase diagram
given in [5] and in section 2. Note that deviation of the boundaryfrom the straight lines
aTr',,, 9Ty, is exaggerated in the vinicity dfie,, 6,). Numerical estimates give./uo ~ 103,

0./60 ~ 10.

Proof. By virtue of (2.9), (2.13) and (2.14), the equality (2.17) is ensured by
SupG (B, u; po) = G(B, w; po = 0). (2.19)

p0=0

If 9,,G(B, u; po) < 0 or equivalently%q)(O) < h(v(0)pg — u, B) for pg = 0, then sufficient
condition (2.18) guarantees (2.19) and hence (2.17). O

Corollary 2.7. Sinceh(z, 8) is a convex function of > 0 andh(z, 8) > z, then by (2.16)
we get

A(0) < inf h(z, B) (2.20)
IZ—p
where
A0) = @Sh(z B). (2.21)

Therefore, by (2.20) we get a sufficient condition independent &f 0 (high-temperature
domain, see figure 1):

Ty, = {6, u < 0) : 30(0) = A(6,) < A(0)} (2.22)
which ensures (2.17).

Remark 2.8Note that the inequality(z, 8) > z and (2.18) implies (2.15) foru > 2¢(0),
i.e.I',, C I'. On the other hand, (2.18) for = 0 implies (2.22), i.eT'y, C T, see figure 1.

Remark 2.9Sinced, (@) > 0, one can always ensure (2.22) for a fixed temperaiure
by increasingv(0) without changingy(0).
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Remark 2.10Note thatp!(8 = 400, u) = 0 and thatv(¢ = 0) = 0. Therefore, at zero
temperature the sufficient condition (2.18) reduces to (2.15), see figure 1. In fact this part
of I is known from [5]. Theorem 2.6 shows that conjecture 1.3 can be extended at least to
the domainl" (2.18).

Below we show that this conjecture ot valid in the complemenQ\TI", see figure 1.

2.3. DomainD: p2(B, n) # p' (B, 1)

Let Hoy C L%(A) be the one-dimensional subspace generatedshy (see section 1).
Then the Fock spac&, is isomorphic to the tensor produ@ly, ~ Fox ® F), whereFo,
andF), are the boson Fock spaces constructed o#{gf and of its orthogonal complement
Hg, respectively. For any complaxe C, we can define iFo, a coherent vector

Yo (c) = *V'C‘z/zzk—ﬂﬁc)k(aéfszo (2.23)
k=0 "

where is the vacuum ofF,. Thenagyoa (¢) = v/ Vcoa (c).

Definition 2.11.[4] The Bogoliubov approximation for a Hamiltonidti, (1) = Hxy — uNy
in F, is the operatoiH, (¢*, 1) defined inF, by its quadratic form

(W1, Ha(h, mvd) 7, = (oa(0) @ i, Ha(w)poa (€) ® ¥) 7, (2.24)
for Yoa(c) ® ¥q , in the form-domain off, (w), wherec® = (¢, ©).

This formulation of the Bogoliubov approximation [1, 2] provides an estimate for the
pressurep, [Hf] from below which allows us to refine (2.9).

Proposition 2.12[5] For any (9, u) € Q one has

sucpﬁm, s ) < palHP (2.25)
ce
where
1 5
PAB. s ) = Sy T, e PR, (2.26)

Remark 2.13By definition 2.11 we get from (1.4)—(1.7) that
HYF w= Y les—pn+vOlePlaga+3 Y vblePlafar +a*ya]

keA* ks£0 keA* k0
+3 ) vlPaiat, + Paai] — plcl?V + Fu(0)c[*V. (2.27)
keA* k0

Therefore, after diagonalization one can calculate (2.26) in the explicit form:
PABs s ) = Ex (B, 5 ) + na (3 )

1
En(By i x) = — In(1 — e PEey~t
* BV ke;ﬂ (2.28)

> (Ec— fo) + px — 3v(0)x?

keA* k0

(u; x) = L
na(u; x) = 2V

where E; and f; are functions ofc = |c|? > 0 andu < O:
Sfe =& — p+x[v0) + v(k)]
hy = xv(k) (2.29)

Ey =,/ f2—h2
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Now the strategy of localization of the domaid, (see figure 1) becomes clear: by
virtue of (2.9) and (2.25) one comes to describe the s&bgf) € Q such that

P! (6. 1) < lim | suppL (B, s ) (2.30)
ceC
Proposition 2.14.[5] Let v(k) satisfy (A), (B) and

1 3 [U(k)]z
V0 > 5o A; Ph (2.31)

Then, cf (2.6),
suppi (B, i ) = pR(B, 113 0) = ph (B, ).

ceC
Therefore, in the thermodynamic limit (see (2.7)) we get

lim [Supﬁf(ﬁ, s c#)] =p'(B. ). (2.32)

ceC
Lemma 2.15Let v(k) satisfy (A), (B) and the condition (C):
1 3, [V(K)]?

v(0) < TSE /1‘%3 d°k o (2.33)
Then, there isup < 0 such that

im ((Supna (115 1)) = 13 ¥1) > 0) > O for ju € (o, O], (2.34)

x>0

Proof. By the explicit formulae (2.28) and (2.29) we readily find that fox 0:
(8) na(w; x = 0) = 0 andn, (u; x) < constant- 2v(0)x?
(b) 3,na(; x =0) = u and
1 [v(k)?
A x =0) = —— N 0).
2v kEAX*,;;&O (81( - M)
Since

1 2 1 2
lim — LIC) / )
A2V Tz B — ) 2(21)° Jps (e — )
the condition (2.33) implies the existence jof< 0 such that

Iilr\n 85171\(“ > ;x=0)>0.
By virtue of (a), (b), and lim 9,174 (x = 0, x = 0) = 0 this means that
im (supnA(,u —0; x)) — (=0T =0)>0) > 0. (2.35)

x>0

Therefore, by continuity of (2.35) on the intervgl, 0] we get the existence qip: i <
wo < 0, such that one has (2.34). O

Theorem 2.16Let v(k) satisfy (A)—(C). Then, for any € (uo, 0], there isfo(i) > 0 such
that one has (see figure 1):

p' B, w) < pP(B,w)in Do={(0, 1)t o< <0,0<0 <o) (2.36)
where i is defined by lemma 2.15. In fact the domdig coincides with

Do = H(H, w - lim supps (B, u; ¢ > p'(8, M)}«
ceC
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P pH(Bx)
R N
0 . RO x
N 7 Ry X &
N e VR,
e T G &
- = ~ ~ RN
~ ~N 7 \‘9@)
AN N @\\0 ’/(OJ "Qx{
\@0 \ % N
7 o i
= N, /
7 N \
F \ N
~ N

Figure 2. lllustration of the Bogoliubov approximation variational problem: the behaviour of the
difference between the trial pressyié (8, u; x) for the WIBG and the IBG pressur (8, i)

as a function of the variational parameter= |c|? for different values of(¢, ). Non-trivial
suprema are indicated by empty circles.

Proof. First we note that by (2.28) and (2.29) one Bags, u; x = 0) = pj (8, n) and
that in addition:

(i) 0:6a(B, 3 x) <O and Ii£n En(B,u;x)=0 for any A

. . (2.37)
(i) 99&a(B, 3 x) =0 and ellrgéA B, u;x) =0 for any A.
Next, by lemma 2.15 fo = no < 0 we have
lim ((supn (10 %)) = 1105 0) = np10; F(s10) > 0) = . (2.38)
x>0
Hence, according to (2.37) and (2.38) one obtains:
(i) 0 > 0 : lim [ SUpX (B, pos c*) | = SUHE (B, 105 x) + (1103 )]
A ceC x>0
= PP (B no; ¢ =0) = p'(B, W) (2.39)
and by (2.37), (i) and (2.38), we obtain:
(iv) 6 =0:lim [Supﬁf(ﬂ = 00, Uo; c#)] = pP(B = oo, po; ¢ = 0)
A ceC
= pB(B = 00, 110} ™)|jepr=x(ug)>0 = O
see figures 1 and 2.
Now by (2.28), (2.37) and lemma 2.15 one obtains thatufer< u <0
im [ supp (B, 1 > pos )] = n(p > pos () > 0) > 0. (2.40)

ceC
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Since by (2.37) (i) the pressurn (8, u < 0) is monotonously decreasing fér\, 0, there
is a temperaturéy(r)such that ford < 6p(u > o) we get from (2.40)

P'(B > Bo1). 1t > o) < Nt > po; () > 0) < lim [supﬁﬁ(ﬂ > Bo(i), > po; c#>].

ceC
(2.41)
Then (2.25) and (2.41) imply (2.36) f@é, u) € Do which is equivalent to (2.30). (]

Corollary 2.17.Let

D={0,w:pB, 1w > p'B wh (2.42)
Then by (2.25) and (2.36) one obviously gets

D2 Do={,p):po<p<00<0 <bo(u)}
Here g < 0 is defined in lemma 2.15 arfid(w) in theorem 2.16.
Remark 2.18The condition (C) defined by (2.33) is sufficient to guarantee that 0, i.e.

D D Dqg # {#}. On the other hand, the contrary condition (2.31) implies only the triviality
(2.32) of the lower bound (2.25) fgr® (B, 1) but not D = {4}, see lemma 2.3 and (2.30).

Therefore, for the moment we do not know whether condition (Chasessaryfor
D # {#}. We postpone seeking the answer to this question until section 3. Below we
remark on a relation between conditions (2.31) and (2.33) (which result from a rather
restricted analysis of convexity and monotonicity of th&(8, u; ¢*) in the vicinity of
x = 0) and the condition (2.15), which gives triviality to the upper bound (2.13) for
p8(B, u) for all temperatures (see figure 1).

Remark 2.19L et v(k) satisfy (A)—(C). Then there if < 0 such that foru < & one has

1 [U(k)]z 3
0 > d°k 2.43
0> 565 [t (243

and in consequenc#’n(u < fi;x = 0) < 0 (see the proof of lemma 2.15). One can
represent the inequality (2.43) as

X v(k) v(0)
o @i {2<ek - 90 } s (244
Since by (B) and by < 0 we have
v(k) < v(0)

20— ) (=20
the conditionu < —%w(O) = u, ( 2.15) implies (2.44), i.en, < i1, see figures 1 and
2. Therefore, a local convexity condition (2.43) fpx (u; x) is intimately related to the
condition ensuringp®(8, ) = p’ (8, w). In particular, notice that for the condition (2.31)
the inequality (2.43) is valid for any < 0.

We conclude this section with a simple and important theorem for characterization of
domain D (cf (2.42)).

Theorem 2.20Let
. [aja
po (B, 1) = lim <°—°> (B, 1) (2.45)
ANV [y
be the density of the Bose condensate in the Bogoliubov WIBG (1.4). Then

D={0,1) € Q:py (B, 1) >0} (2.46)



Exact solution of the Bogoliubov Hamiltonian 9387

Proof. Put

AP = HE + Lo(0)ajao. (2.47)
Then by remark 2.4 we get

lim pa| 1] < SULG (B, 11: po) — 30(0)po} = p' (B, ). (2.48)

p0=0

By the Bogoliubov inequality for/? and H? one has

palif) - U2 (95 < palig), (2.49)
HY
Hence, by virtue of (2.9), (2.48) and (2.49) we get in the thermodynamic limit that
pl(B. )~ Mpc?(ﬁ W < pPB.w) — Mpg(ﬁ W < pB. .

Therefore,p?(B, 1) = p’(B, w) if and only if pZ(B, 1) = 0, which gives (2.46). O

Remark 2.21The observation thap®?(8, n) # p’(B, n) only when pf(B, 1) # 0 is

very similar to what is known since Bogoliubov theory of superfluidity [1, 2]. An
essential difference is that in the Bogoliubov theory the gapless spectrum occurs for a
positive chemical potentiat = v(0)pf where the system corresponding to the Bogoliubov
Hamiltonian for WIBG is unstable. For further discussion see [5, 10, 11] and section 5.

3. Exactness of the Bogoliubov approximation

Since the pressure®(8, u) # p’(B, ) only in domain D, where the Bose condensate
o (B, ) > 0, the aim of this section is to identify® (8, 1) in this domain. Below we
shall show that

P (B ) = lim | SUPR (B, 45 | = supp” (. s (31)
and that in fact (cf (2.36) and (2.42)) one has
D = Dq. (3.2)

Therefore, the condition (C) (2.33)ssifficientandnecessaryor D = {} (see remark 2.18).

By definition of p%(B, u; c¥), (see (2.25)—(2.28)), the statement (3.1) means that the
Bogoliubov approximation for the WIBG isxact Since p% (8, u; ¢*) is known explicitly,

the statement (3.1) gives tlexact solutionof thermodynamics of this model.

In section 2 we showed that it is the non-diagonal dagt (1.7) of the Bogoliubov
Hamiltonian (1.4) that ensures that®(8, u) # p’(B, ) in domain D # {@#}. The
interactionU, is known to beeffectively attractivg5], and given condition (C), it prevails
over the term of direct repulsive interaction between bosons for the med8 (see (1.6))
[12]. Therefore, to prove (3.1) we use the approximation Hamiltonian method originally
invented for quantum systems with attractive interactions (see e.g. [9]).

Remark 3.1 This method was adapted by Ginibre [4] to prove the exactness of the
Bogoliubov approximation for a non-ideal Bose gas (1.2) with superstable interaction, which
is the case ofi(¢g) satisfying (B). But after truncation of (1.2) the Hamiltoni&rf (1.4)

for WIBG is not superstable. By proposition 1.2, the system (1.4) is unstable fer0.
Below we follow the approximation Hamiltonian method as used by Ginibre, improved for
the WIBG.
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Since in the approximating Hamiltonid#? (¢*, 1) (2.27) the gauge symmetry is broken,
we introduce
HE W) = HP — V'V (@ag + va) 33)
HE (uv*) = HE (W) — uNy '

with sourcesv € C breaking the symmetry off 2, herev” = (v, v). Then by proposition
2.12 and the Bogoliubov inequality fd#J (1, v¥) and H? (c*, 11, v*) one gets:

0< Aa(B. s V) = palHZ V)] = PR (B, ms ¥, v)
< é(H/l\;(C#, M, V#) - H/l\g(/vh V#)>H1{‘(v#)- (3.4)
Let A = ag — Ve, A* = a§ — ~/Ve. Then a Taylor expansion around gives:
HE (v — HE (uv?) = —A*[ag, HE (i, vh)] + he. + 1A [ao, [ao, HE (1, v¥)]]
+ h.c.+ A"ao, [Hy (1, v), agll A — $A" [ao, [ao, [HX (11, v¥), a3l A
+ h.c.+ 4" [ao, [ao, [[H Y (1, %), a3lag]l] A%, (3.5)

Remark 3.2 Explicit calculations show that the third and the fourth order terms in (3.5) are
bounded from above:

0 0
—%('A AA + cA*A*A) — UZ( ) A% 4% = 2v(0)|c|?A*A

U(O)(A2+2«/_ VcA)* (A% + 24/ VeA) < 20(0)|c|?A*A. (3.6)

Remark 3.3 After some algebra, the terms of the first and the second order in (3.5) can be
combined in

—3[A* A, [H (u, V"), A*A]] 4 2A%[A, [Hf (. v"), A]] A

—3A[A, H (u,vh] = 3[HS (. v¥), A"]A. 3.7)
Lemma 3.40ne has the following inequality:
([A*A,[HE (. v¥), A*AT]) ooy = 0. (3.8)

Proof. Denote by (.., the positive semidefinite scalar product with respect to a
Hamiltonian H, (see e.g. [13])'

X, Y = dr T (B— I)HA(M)X THA(M)Y 3.9
( )HA ,BHA(/g M) / T r]‘-/\ (e ) ( )
Then(1,Y)y, = (Y)n, and

BAX, Hx(w)], [X, Hx(WD#, = ([X, [Ha(w), X*]) a1, - (3.10)
Applying (3.10) toHa (1) = HE (n, v¥) and X = A*A one gets (3.8). O

Lemma 3.50ne has the following estimate:
2(A™[A, HB(,U«, #)] HB oh S ([A*, [HB(M’ #) All) HE (%)
A, THE G, 0%, AT pm + 287 (A, AN g (3.11)
where{X,Y} = XY + Y X.
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Proof. By the spectral decomposition of the Hamiltoni@id ? (., vy, = E,¥,) one gets

S W, AV R — Ep) (€ PEr 4 e7Em),

(A", LRG0 ADpan = gy 2

(3.12)
Since
1 o1 e—e :
le+e)— il —¢|< o <36 +¢e) (3.13)
one gets
B(E, — E,) (e PEr 4 e PEny < 2(e7PEn — e PEm) 4 B(E,, — E,)|ePF — e PEn|
< 2(e PEr e PEny + B(E,, — E,) (e PEn — e Py, (3.14)

Inserting the estimate (3.14) into (3.12) we obtain
({A* [HE (u, V™), AN ps o < 28~ HAA* + A" A)psor + ([A7, [HE(w, v, AlD g5 )

(3.15)
Note that
—2(A*[A, HY (1, vO]) ooy = (LA™ THR (e, v¥), Al o)
+({A*, THR (1, v, A o - (3.16)
Then combining (3.15) and (3.16) one gets (3.11). O

Corollary 3.6. Since

(A[A, HY (i vOD) iy = ([HR (1, V), ATTA) oy
by the estimate (3.11) the mean value of the last two terms of (3.7) is bounded from above:
—3(A"[A, HY (1 V)] oy < FUAT THR (e, v™), Al +0eC) ey

+3BTHAAT + AT A) s ). (3.17)

Since we are looking for the estimate of (3.5) (and consequently of (3.7)) dlmwe
the inequalities (3.8) and (3.17) show that it remains only to estimate the mean value of the
second term in (3.7). Here we formulate the result; the proof is postponed until appendix A.

Theorem 3.7Let (9, u) € D Then there are two non-negative, locally boundedlOn
functions

a=a0, u, id
©, u #) (3.18)
b=b@®, pn,v")
such that forjv| < rg, ro > 0, one has:
(A*[A, [H (v, ATTIA) ooy < alA*A) o +b. (3.19)

To prove the next statement (theorem 3.14) we need first to prove the following lemmas.

Lemma 3.8For (9, 1) € Q andv € C we have

1 o0
palHE ] < pLB. ) + {,B_V Z e§[<<p<0)+2)no—v<0)n5/v]} + 2 (3.20)
n0=0
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Proof. By the inequality
—VV(@ag + vag) = —agao — V|2V
(3.20) follows immediately from the estimate (cf (2.11) and (2.12))

v(k) v(0)
HP (%) — uNy > k Z (ek — - W) n+ oo = (i 59(0) + no — vV
eA* k#0
O
Corollary 3.9. By (3.20), in the thermodynamic limit, one gets
PP(B. 1w v < p' (B ) + %sugi(w(o) +2)p = v(0)p%] + vP? (3.21)
p>
for (6, u) € Q,v e C.
Lemma 3.10For anyu < 0 andv € C one has the estimate
N
<7A> < gn (B 1) < . (3.22)
HE (%)

Proof. For anyu < O there is§ > 0 such thatu + 8 < 0. Then by the Bogoliubov
inequality we obtain

N
5<—"> < palHE (W) = 8NA] — palHZ (V). (3.23)
|4 HE")
Therefore, by lemma 3.8 one gets (3.22) for
1
ga(B, ;") = S(PR (B, 1+ 8% = pR(B, 5 v¥)). (3.24)
(Il

Corollary 3.11.In the thermodynamic limit (3.24) gives
. [N 1
PP (B, s v*) = lim <—A> <SP B+ 8V = pP (B s v) = g (B i vY).
HE(#)
(3.25)
In fact, for u < 0, v € C, we have that

PP (B, 1;V") = 3, p® (B, 1 V%) (3.26)
by Griffiths’ lemma [8].
Corollary 3.12.By virtue of (3.22) one obviously obtains:

agao

# ag
—_ <gn(B, ;v (| —=
HE (%)

_|[ % <Ven B, i vP). 3.27
<\/V>Hf(v#) <\/V>Hf(v#) gA(ﬂ v ( )

Remark 3.13To optimize the estimate (3.4) we have to look for sup?2 (8, u; ¢, v¥).
Since by definition 2.11 and (3.3)

Vv

HP(*, p,v*) = HY () — Ve +e) = HE(cF, ) = V(vPle> + 1) (3.28)
from (2.28) one has that for any, 1) € Q and a fixedv* there isA > 0 such that
Pa(B. s %) <A = Zu(0)|cf*. (3.29)

Thus for any compack c Q x {v € C}, the optimal value ofc| is bounded by a positive
constantMy < oo.
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Now we are in position to prove the main statement of this section (see (3.1)) about
exactnesf the Bogoliubov approximation for the WIBG.

Theorem 3.14Let (6, u) € D. Then
lim {pfi(ﬂ, 1, V%) — SupﬁA(ﬁ, s ¥, v#)] =0 (3.30)

locally uniformly in D for |v| < rg, 1o > 0.

Proof. From the main inequality (3.4) one obtains

. 1
0 < inf Ax(B, i ¢, v%) = An(B, 3 EX (B, 11,V V) < ZUHZ (™)

—Hf(llu U#)>H§(v#)~ (3-31)

By virtue of (3.5)—(3.7), estimates (3.6), (3.8), (3.11), (3.17), (3.19) and remark 3.13, there
are positive constants andw independent of the volumg, such that

1
V<HB(c 1, V) = HZ () ooy < {(ao V), (a0 = VVOY grry (3.32)

locally uniformly in D.
Putc = (ao/~/'V) s+ Which is bounded (see (3.27)). Then

AN, s G V%) < ANB. 3 (al /N VY oy V)
and estimates (3.31) and (3.32) give

0 < inf Ax(B, s ) < & + —<{(a0 (ag)), (@0 — (ao)}) s (3:33)

where for shorta) = <ag>HAB(U#). Let daf = afy — (af). Then, by the Harris inequality (see
[9, 14]) one obtains

3({8ag, 8ao}) yp ey < (8ag. 8ao) s e + 5 p [(Sao,[HB(u, V), 8ao]]) 3 (- (3.34)
By condition (B) on the interaction and Iemma 3.10 we have:
v(0)
([8ag, [HR (. v), 8ao]l) sy = <7N 7 - Z v(k)akak>
Vi HE (v
< 20(0)gA (B, p: V™) — . (3.35)

Since by (2.6), (2.10) and (3.25) we have a uniform boundedngs&s, u; v*) < go for
each compacCo(u < 0) C D and|v| < ro, the estimate (3.33) in this compact set takes
the form:

0< |nf Ax(B, ;v —[u + w(dag, 8a0) 5 (v (3.36)

Now we can proceed with the standard reasoning of the approximation Hamiltonian method
(see [9]). First we note that

1
(8ag, dao) yp () = Eav%PA[Hf(V#)]- (3.37)

By the (canonical) gauge transformation— ag€?, ¢ = argv, one finds that in fact
PAlHE )] = pR (B, i vl = 7).
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Then passing in (3.37) to polar coordinatesy) we obtain:

1
(8ag, 8ao) sy = mar(rarpf). (3.38)

Let ¢ = |c|€¥, ¥ = argc. Then by (3.3), (3.4) one obtains
Inf An(B, w3 ¢, v%) = Inf Ax(B s lele™”, re™) =inf Ax (B, s lele™. r)
CcEe cl, c
= ilnlfAA(r). (3.39)

Therefore, by (3.36)

R+e ) B 1 ~(R+8)2—R2 w .
/R r I|r2\f Ar(r)dr < v {uf + @(rarpf)|§+ } (3.40)
for [R, R + ¢] C [0, ro]. Note that by (3.27) we have
8, Py = 2lao/NViyson| <286 (0w €CoC D,|v|<ro.  (3.41)
Therefore, (3.40) takes the form
Ribe 1(.(R+&?>—R* w 1
inf A or<—a——F— + —g2(2R . 3.42
/R ”E\ Ar) dr V{u > +2ﬂg0( +8)} ( )
Since by corollary 3.12 and remark 3.13

1 1
<284 +20al < 2(g5 + M)

9, im‘ Ax(r)

for r € [R, R + €] we obtain:

inf A (R) < inf () + 20 = R)(g5 + M).

Hence,
5 R 2 RZ R+¢ 5 1 3 2 R+e
inf A, (R) B8~ R / rinf Ax(r) dr + 2(g8 + M) <r— - Rr—)
le| 2 R le] 3 2) g
Then by (3.42) we obtain
Ce R 1w, 3 R+ %‘9
IEFAA(R)gv{u+Eg08 }+(g0 +M)8R T (3.43)

2

Note thate > 0 is still arbitrary. Minimizing the right-hand side of (3.43) one obtains that
for large V the optimal value ot ~ 1//V. Hence, forV — oo one gets from (3.43) the
asymptotic estimate

1
<i %) = — .
0< 22{; AA(B, ;0™ < 8 constantﬁ (3.44)
valid for each compaof, C D and|v| < rp. One gets (3.30) fofd, 1) € D by extension
of (3.43) tou = 0 by continuity. O

Corollary 3.15.Let (9, u) € D. Then, if one considers the Bogoliubov approximation for
the statistical operatoi

WA — e_/SHf(H,V#)
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we have
lim {pf(ﬂ, 1, V%) — supp’ (B, w; ¢, v#)] =0 (3.45)

ceC

locally uniformly in D, where
1
P8, w; v = ,B_V INTrz, Wi (c® (3.46)

lv| < ro, 1o > 0, and W, (c*) is defined by (2.24).

Proof. Using for calculation of Tg, (=) = Trg, g7, (—) a product-basis ii#,, one gets
(cf definition 2.11)

Trz, (Wa) > sup Y " Won(0) ® ¥ € PIE (€)@ ) = Trg, Walc?)
(ol n

where{y}, is an arbitrary orthonormal basis jf,. Now, wheneverjo, (c) ® ¢, are in the
form-domain of H2 (1, v¥), the Peierls inequality [3] gives (by definition &f2 (., ¢, v¥),
see (2.24)) that

(o (©) ® . & PRy (0) @ ) > e P HEC v,
Therefore, one obtains

PABs s %) < pR(B, s ) < pR B, V). (3.47)
From (3.47) we deduce by theorem 3.14 the thermodynamic limit (3.45). |

Corollary 3.16. Since the variational pressugé (8, u; ¢, v¥) is known in the explicit form
(see (2.27), (2.28) and (3.3)):

PaB, i c* V" = pE(B, w; ) + (ve +ve) (3.48)
the following thermodynamic limits exist:
PP (B ps *, 0%y = lim G (B, s ¥, vF)
. R . B _ (3.49)
PE(B. w; (B, ;v v¥) =1lim [Suppf(ﬁ, w; ¢, v#)] = supp” (B, u; ¢, V).
A ceC ceC

Then by virtue of the locally uniform estimate (3.44) and of extension by continuity to
u = 0 we get

pP(B. wiv") = lim pA[HF (V)] = SucpﬁB(ﬂ, s c®, o). (3.50)
ce
For (8, u) € D, |v| < rp and (cf (3.1)) the limitjv| — O:
pP(B. ) = sucpﬁB(ﬂ, ;). (3.51)
ce

Corollary 3.17.Inequalities (2.25) and (2.30) give
p'(B.w) < lim [ suppl(B. i ] < p (B ).
A ceC

Then definitions (2.36), (2.42) implp, € D, whereas (3.30) implies thd, = D, which
proves (3.2). Hence, we have

pPB.w) = sucpﬁBw, w; c®) for (6, n) € Q\dD. (3.52)
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PoELL)

0/D

Figure 3. Discontinuous behaviour of the Bose condensate dem&if; 1)|? = pf (01, 1)
for the Bogﬁoliubov WIBG:pg > 0 in domainD = Dg and pOB = 0 in the rest of the stability
domain Q\D.

Remark 3.18Since (2.28) implies that

PR(B, ;¢ =0) = pL(B. (3.53)
by (2.36), (2.46) and (3.2) we get

Do = {(0. i) : |é(B. w: v)| > 0} = {(6. ) : p§ (B, w) > 0} = D. (3.54)
Therefore, (see remark 2.18) the condition (C) is sufficient and necessaby $o(@}.

4. Thermodynamics of the weakly imperfect Bose gas
Since the pressurg? (2.28) and lim, 52 = p® are known explicitly:

-B U 3 _ e BE(lcy-1 _ 3 2
Pscth = oo [ ke —ernity oo [ ke

— feel®] + plel? = 2v(0)c|* + (ve + ve) (4.1)

theorem 3.14 and corollaries 3.16 and 3.17 give an exact solution of the model (1.4) on the
level of thermodynamics. Therefore, (3.52) gives access to the thermodynamic properties
of the WIBG for all (8, u) € Q except the line of transitiondD (see figures 1 and 3).

The aim of this section is to discuss thermodynamic properties of the model (1.4) and
in particular the Bose condensate which appears in doaiihe first statement concerns
the gauge symmetry-breaking in domdin

Theorem 4.1Let D # {#}. Then quasi-averages

m limia _eopp o)< | A0 @D
A S Vg = 0.1 = 2 G | (4.2)

Proof. As in the proof of theorem 3.14 by the gauge transformation

U(paou‘;; = aoe’i“’ = dp @ = argv
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we get
HY (u,r) = U HY (u vUs = HY — uNy — V'V (ao + ag) “3)
PalHE ] = paltd HY (1, vHUST = pR (B, s 7 = ).
By virtue of
0= ([Hf (1), NA])}}/'\?(,) =rv/Viap — ag) e
and (cf (3.10))
O <IN, LHR (1), Nall) sy = rv/Vido +3) o)
we obtain
(@) sy = (@0) jipry = 0- (4.4)
Since (cf (3.9))
2R (B, w; r) = B({(do + ag) — (do +ag) s () “s)

{(ao + ag) — (a0 + dg) sy D sy = 0

by theorem 3.14 and corollary 3.16 the sequence of the convexr(fer 0) functions
{pB(B, u; r)}a converges to the (convex function)

PEB, w; ) = suppB (B, u; ¢ vF) = sup pE(B, s |clef?, [v|et'?)

ceC lp\cl>0
=4arge
= pB(B, s 16(B, ;s 1)€Y, [v]eF?) (4.6)

see (3.38) and (4.1), locally uniformly ib x [0, ro]. By explicit calculations one finds that
the derivatives

0<8,p"(B, wsr) = 2B, ;1| < C1

4.7
0< ?ZpP(B, uir) =20,16(B, i) < C2 “D
are continuous and bounded in x [0, r9]. Therefore, by Griffiths’ lemma [8]
. ~ . [ao+ag
lim 8, pA[HY (r =I|m<a0 °> =28, i r
or by (4.4),
im (Go/~'V) sy = 16(B. i 1)
A A
L . (4.8)
I|1r\n <ag/«/7>,;f<,) = [c(B, p; )l
Returning in (4.8) back to original creation/annihilation operators, one obtains
lim{ao//V) yp ) = €168 i )]
(4.9)

lim {ag/~/V) ey = €168, ).

Then the first part of the statement (4.2) follows from (4.9) and the continuity of the solution
¢(B, w; r) atr = 0, while the second part follows from (3.54). O
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Corollary 4.2. Notice that by the gauge invariance

<“—§> —0. (4.10)
VV I (vi=0)

Therefore, we have the gauge symmetry-breaking:

a3 a3
lim lim { —= # lim lim <—> (4.12)
v—=>0 A <4/V>H[1\3(U#) A v=0\/V H}f(v#)

as soon as the Bose condensatighp, ) # 0.
Corollary 4.3. Since by (4.5), (4.7)

07(inf An(r)) = 02(pR(B. i r) = PP (B wir)) > —Ca

the Kolmogorov lemma [15] implies that

<%>HM —1ea(B. i P)I| < 2/65C2 (4.12)

for r € [Ia, ro — [A], In = 2/84/C2 (see (3.44) and (4.8)).
Note that the Cauchy—Shwartz inequality gives

NV IEem \VV g om S\ v H/’\’(v#).
Hence, by (2.45) and (4.2) one gets
N ... laja
1éa (B, w)I? < lim lim <°—°> = p§ (B, 10) (4.13)
v—>0 A \% H/(g(‘}#)

which is in coherence with the definitions of domaifg and D (cf theorem 2.16 and
corollary 2.17). To prove equality in (4.13) we proceed as follows.

Theorem 4.4Let

HY, = H} + aajao

Hf’a(v#) = Hf,a — \/V(vag + Vag)
for « € RY. Then

P2 (B, i v¥) = lim palHY (V)] = lim [supﬁf’a(ﬂ, w; ¢, v#)] (4.15)

(4.14)

ceC
for |v] < rg,r0 > 0 @and (@, u) € Q\dD, where domain
Dy =10, ) : pl(B, ;v =0) > p' (B, w)}. (4.16)

Remark 4.55incer
{4}.

Our reasoning below is a translation of some results of sections 2 and 3 to the perturbed
HamiltonianHy , for smalla.

Lemma 4.6If potential v(k) satisfies (A)—(C), then
Do = {0 ) - suppL . ) > p' B )| # 10) (4.17)

emto® = Hy (see (2.47)), by theorem 2.20 we find thiaf_1 o, =

for @ < —uo, Wwherepug is defined by lemma 2.15.
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Proof. Since then, o (; x) for the Hamiltonian (4.14) (cf (2.28)) has the form

Yo (Ei—fo+ @ —ax - —v<0>x (4.18)

keA* k0

na,(u; x) = v

one can follow the line of reasoning in the proofs of lemma 2.15 and theorem 2.16 to find
(4.17) foru < 0 such thatiu— o) > uo. Therefore, the value gip+a must be negative.l

By continuity from (4.18) with respect te it is clear that lim_.o Do, = Dg. Now we
turn to the proof of theorem 4.4.

Proof of theorem 4.4(a) Since the Bogoliubov approximation (2.24) gives the estimate of
the pressureaA[Hfa(v#)] from below (see proposition 2.12) as:

SUCppAa(ﬂ s ¢ vy < palHE , ()]

by the Bogoliubov inequality we get (cf (3.4)):
0< Apa(B. s v = palHZ ,0] = B3 4 (B. s ¢, v¥)
< G UHE @ ) — HE vt o (4.19)
(b) For operators\” = af —/V¢* and for a Taylor expansion di? (¢*, u, v¥) around
a}y one obtains the estimate

0< inf Apo(B, : c#, V) = Ano (B, w5 &4 o (B, s v%), 0%
ce
<u {(a0 VVe), (ag— v Ve)}) HE (%) (4.20)

by repeating verbat|m the arguments developed from remark 3.2 through to remark 3.13.
The only difference with the case= 0 comes from

[A, [HY o e v), AT = [ATHR (1, v5), A*]] +

cf (3.35), and the note that lyn.gu, = u and lim,_ow, = w.
(c) Putc? = /J_ Yus_# in the left-hand side of (4.20). The same line of reasoning
as in theorem 3 14 gives ‘the asymptotic estimate

1
0< |nf Ano(B, w; ¢ v%) < drq¢ = constant(oe) — (4.21)

N7
valid for (8, u) € Q\d Dy, || < —uo, and|v| < ro which ensures the proof of (4.15) for
Dy # {4}

Corollary 4.7. Since
92palHE ] = L (a0 — (@§ao)ny o) (@80 — (@3ao) s e s o > O
a DAL o =V apdo — \dgdo) gk (v¥%))> \dodo — \dodo)HE (%)) HE v#) Z

functions{pA[H}f’a(v# = 0)]}» are convex forx € Rl. The same is obviously true (cf
(4.1), (4.14) and (4.15)) for the limit

lim palHZ ,(VF = 0)] —Sucppa (B, s v =0) = pE(B, w; ¢%(B, 1), 0)

= pB (B, W (B, W), 0) — ale (B, W2 (4.22)
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By explicit calculations one finds that

3o Po (B, 103 E5(B. 1), 0) = —|éo (B, w)|* < constant (4.23)
for (6, u) € O and|a| < —uo. Therefore, by Griffiths’ lemma [8] we obtain:

agaop

lim 8aPA[Hfa(V# = 0)] =lim —< > = _|éa(,3’ M)lz (424)
A ' A HE _ (v#=0)

Corollary 4.8. By the continuity ine — 0, equations (4.2) and (4.24) imply that

040 o ag [ ao i 2
5 (B, u)—llm< v >H/’\*_IIT<\/V>H}§ Illr\n<ﬁ>Hf—|c(ﬂ,u)l. (4.25)

We conclude this section by analysis of the Bose condensitg, 1) behaviour. By
virtue of (4.25) it reduces to the analysis of the behavioufc@8, )| which corresponds
to the sup_ of the trial pressure (4.1):

PEB, s PV =0) = £(B, s x = |cP) + n(us x = |el®) = pP (B, 1; ) (4.26)
where (cf. (2.28) and (2.29))

§(B, u; x)

d®k In(1 — e PE)~1

1

(2% Jes

/ &k (fi — Ex) + pux — 3v(0)x? (4.27)
R3

n(p; x) = 220)°

fi =& — 1+ x[v(0) + v(k)] he = xv(k) Ey =,/ f2—h2

Below we collect some properties of the trial pressure (4.26).
(1) For i < 0 the function (4.26) is differentiable with respectite= |c|?> > 0 and
lim pB(B, u; ) = —o0. (4.28)

|c|2— 00

Hence, sup.,(& + n)(B, u; x) is attained either at = 0, or at a positive solution of the
equation

= NN 3, (1 _ oBE-1
0= (€ +(pin) = g [ k- T
1
28 o T @R =S + 1 —x0(©) (4.29)

—see figure 2.
(2) By definitions (4.27) and the properties (A) and (B) of the potenti&) one obtains

0y fi = v(0) + v(k) 0 Er = E N (fv(0) + (fk — ho)v(k)) >0
for 4 < 0,x > 0 and anyk € R3. Therefore, by (4.29) we have

9P (B s ¢ =0) < dn(ui x =0) = 0, p* (B =00, u; ¢ =0) = pu. (4.30)
(3) By explicit calculation one finds thaf, d,n(u; x) > 0 for u < 0 andx > 0. Hence
B (; x) < den(pe = 0; x) (4.31)

ando,n(u = 0; x) is a concave function of0, o).
(4) Now, let potentialv (k) satisfy condition (C). Then

2
32n(n = 0, x) = —v(0) + / [”(k)] d*k >0 (4.32)

2(2 )3
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Sincen(u = 0; x = 0) = 0, (4.32) means that the trial pressure
PP (B =00, p; ) = n(u = 0;x)

attains sup., for (6 =0, u = 0) > 0, and, by continuity for® > 0, u < 0), the domain
Do = {0, ) : (0, ) > O} # {V}

—see lemma 2.15, theorem 2.16 and figure 2.
(5) Fix © € Dg and® = 0. Then, according to (4.30),

2 pP(B =00, u; =0 =pn<0.
But 258 (B = oo, u; ¢, v*¥ = 0) > 0 ensuregé(B = oo, w)|2 = £(0 = 0, u) = x(u) > 0
(see figure 2), i.e.
PP (B =00, ;¢ = 0) < pP(B = 00, 115 18(B = o0, WI). (4.33)
(6) Sinced, &(B, u; x) < 0 (see (4.29)) and
300 (B, s x) = ((2;1))3 & f_E"Tf;

there is a critical temperatug(w) (cf theorem 2.16) such that for € Dy andé = 6p(w),
one obtains:

SUAE(Bo(), w5 x) + ns; x)] = E(Bo(w), p; 0) + n(; 0)

x=0
= E(Bo(), w3 X(Bo(p), 1) > 0) + n(u; X (Bo(w), 1) > 0) (4.35)

whereas for < 6y(u) the supremum is attained at= x(9, u) > 0 and foré > 6p(u)
it ‘jumps’ to x(@, u) = 0 (see figures 2 and 3). Therefore, we have proved the following
statement.

Theorem 4.9If interaction potentiab (k) satisfies conditions (A)—(C), then domdain=£ {(}
and the Bose condensate undergo a jump on the bouddary

>0,0,un) e D_}
=0,(0,n) € O\D

where by definition:,og(@‘l, w=0)=lim, o pg(e—l, w) (extension by continuity).

9 Ex <0 (4.34)

o (07", ) = { (4.36)

Behaviour of the trail pressure (4.26) and the condensate (4.36) are illustrated by
figures 2 and 3.

5. Concluding remarks

This paper has presented an exact solution of the Bogoliubov WIBG model (1.4) originally
conceived as a starting point for the explanation of superfluity [1, 2].

(i) We have shown that the thermodynamic properties of the model drastically depend
on the interaction potential. We found that itrien-diagonal part of interactiorthat makes
the model non-trivial (i.e. non-equivalent to the IBG)—theorems 2.16 and 3.14.

Therefore, we have answered the question formulated in [5] by showing that its solution
depends on the potential. In particular we established that condition (C) (2.33) is necessary
and sufficient for the WIBG beaon-equivalentto the IBG in the domain of stability
0=1{0=>0} x{u<0.

(i) We have shown that the Bogoliubov approximation for the WIBGisctin the
sense of theorem 3.14. It enables explicit calculation of the pregstigs, ). On the
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other hand this exact solution is rather different from the result of the Bogoliubov treatment
[1, 2] of the Hamiltonian (1.4). This is because it involves additional hypotheses which are
equivalent to modifications of the original Bogoliubov Hamiltonian (1.4) (see [10, 11, 16, 17]
and references therein).

(iii) We have found that for interactions satisfying conditions (A)—(C) there is a domain
(figure 3)

D={0,pn): pno<pn<00<6 <b(uw)}cCO

where the pressurg? (8, u) # p’(8, ). We have shown (theorem 2.20) that in fact

D = {0, p§ (B, 1) # 0}

wherep§ (B, w) is the density of thé = 0 mode Bose condensate in the Bogoliubov model.

(iv) It was shown (theorem 4.1) that the gauge symmetry is brokef #nd thatp
changes its value oD from p# = 0 to p # 0 discontinuously (theorem 4.9).

(v) Moreover, the Hamiltoniari 2 (¢%, i), which is the thermodynamic equivalent to
HE(w) (corollary 3.16), has @ap in the spectrum for lin,o E; in domain D, i.e. in
the presence of the Bose condensate (see (4.27)). This again indicates that the original
Bogoliubov Hamiltonian (1.4) has been highly modified [1, 2, 5, 10, 11, 16] since its
original invention for the description of superfluidity. The physical reason of the difference
between theexact solutionof the modelH? and the Bogoliubov theory [1, 2] is in the
different treatment ofuantum fluctuations

It is the quantum fluctuations of the operataﬁsﬁ that imply aneffective attraction
between bosons with = 0 in WIBG [12]. This attraction is the cause of two phenomena:
instability of the WIBG foru > 0 (proposition 1.2) known since [5], anchan-conventional
condensation of bosons in the= 0 mode for negativex when theeffective attraction
between thenmdominatesa direct repulsion in (1.6) (see condition (C) (2.33) (or (24) in
[12]) and theorems 2.16 and 2.20). By contrast, the Bogoliubov treatment of his model
HE (1.4) was based on the appoximatiefi/~/'V — ¢* (2.24), i.e. on theelimination
of the quantum fluctuations which makes the Hamiltoniafi(c*, ;1) (2.27) stable for a
larger chemical potential domainz < v(0)|c|? (i.e. even for O< u < v(0)|c|?> where
the model (1.4)does not exist. To make this treatmergelf-consistenand to gain a well
known gapless spectruprBogoliubov’s judicious choice of the parametef> comes from
the maximization of only thenon-fluctuating’'Landau’s part’ of the trial pressure (2.28),
i.e. of ux — %U(O)x2 (for discussions see [16-18]). This choice bolsters the assertion of
elimination of the quantum fluctuations for the Bogoliubov theory of superfluidity, but at
the same time creates great debate about the role of the quantum fluctuations in the full
Hamiltonian (1.4) in the presence of the condensate (as with the Hugenholtz—Pines theorem
and Gavoret—Nogres analysis [19]) as well as mathematical papers about different model
Hamiltonians with diagonal [20] amabn-diagonalboson interactions [10, 11, 21] containing
rigorous results on the Bose condensation in these interacting systems.

We have given the exact solution of the simplest non-diagonal mig¢ig(1.4) invented
by Bogoliubov for WIBG. Instead of Bogoliubov treatment we considered the midgedf
WIBG rigorously, without anya priori ansatz or approximations. Our results (i)—(v) show
that quantum fluctuations of operatarg/\/v make the properties of WIBG drastically
different from the Bogoliubov treatment. This evidently means that the Bogoliubov theory
of WIBG is somethingmore that a simple study of the modél 2 (c*).

For example, our rigorous study of WIBG shows that the Bose condensate implies a gap
in the excitation spectrum (see (v)) in contrast to diva of the Bogoliubov theory. In fact,
the nature of this gap is well known. The interaction in thencated Hamiltonian H? (in
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contrast to (1.2)) is1on-local This violates local gauge invariance and as a consequence
the Hugenholtz—Pines—Gavoret—N&ras analysis (see an instructive discussion in [18] and
the literature quoted there).

It may seem garadox (cf the above remark about fluctuations) that the Bogoliubov
approximation isexact (see (ii)) for calculations of the thermodynamic properties of the
WIBG. In fact the quantum fluctuations (e.g. in the theorem 3.14) are not forgotten. They
are responsible for the definition of domainwhere the modeH ? is stable and they define
(in addition to the ‘Landau part’) a non-trivial ‘fluctuating part’ of the trial pressure (2.28).

Notice that the Bose condensatipfi (8, ) in the WIBG for i < 0 (see (iii)) is due
to effective attraction of the bosons in the mokde= O (see condition (C), (2.33) and
theorem 2.20). We call ihon-conventionalor dynamical condensatigrin contrast to the
conventionalBose condensation which is due to a simgdeurationof occupation numbers
in modesk # 0 [12]. The above study was done in the grand canonical ensemble by fixing
temperature@ and chemical potentigt. Since the particle density® (8, n) = 8, p2(8, 1)
is bounded foru — 0~ (see (3.25), (3.26) and theorem 3.14), for densities p?(B, 0)
one has to anticipate eonventionalBose condensation due to saturation of the density
pB. Foré < 6y (u = 0) this conventionalcondensation occurafter the non-conventional
condensatior}og(ﬁ, ). We return to these two scenarios of condensation elsewhere.
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Appendix A. Proof of theorem 3.7

(1) Notice that the pressupe, [H}f(v#)] is bounded from below and from above uniformly
on any compacK C Q x {v: |v| < ro} see (2.25) and (3.20). Since the family

{PAlHZ )] = pR(B, 13 v aces
consists of convex functions of the chemical potentiak 0, by compactness argument
(see e.g. ch ll, section 10, [22]) there is a subsequ@pﬁje(ﬂ, "w; v#)};?il which converges
uniformly in & on any compacf,, ¢ R! and fixed, v to the convex functiop? (8, u; v¥),
i.e. converges locally uniformly iR? .
(2) The grand-canonical pressure has the form:

1 o ) B
Pa (B, s v¥) = v { > eﬁvw@ff(ﬂ*“w“””} = (BV) LInEE (B, i v (A1)
N=0
where
1 )
fEB.p=N/vivH = “5v Try, e FHICD p >0 (A.2)

is the free-energy density. By conditions of the theorem(8,7:) € D, which corresponds
to the one-phase domain p§ > 0. Consequently{d, pX = () s > O} andd, p? =
(the Griffiths lemma)= lim, 9, p% are continuous functions gf € [o(B) + ¢, 0), ¢ > 0.
The 9, p? can be extended to = 0 by continuity. Then by a Tauberian theorem proved
in [23] the existence of the limip? (8, u; v¥) entails the existence of the limit

fPB. p: v®) =lim f7(B. p: v¥) (A.3)
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which is uniform on the interval

p €Ly, =[0,p" (B, no(B) + £1:v%), 9, p” (B, —e2; V)] £12>0. (A.4)
In fact on this interval the limit (A.3) coincides with its convex envelope (tlegendre
transformation:

BB, p; v = C.E.{fE(B, p; v¥)} = suplup — p® (B, w; v} (A5)

n<0

(3) By virtue of (A.3) and (A.5), forlA;| large enough functionsflﬁ (B, p; V#)}f'il are
strictly convex on/,,, and foru € [uo(B) + €1, 0]

N N
SILVJD<N«V —fe (/3, V; U#>> = wpp — fEB, Pas V) = —Fa(B, s pp, V™) (A.6)

Pa(n) € L,,. Then for|& —p,| > £ > 0 one gets
Ny - _ =
Fa ﬁ,u,v,v >Fa(B, i pp, V) +y=Fa+y y>0 (A7)

and for |5 —p,| < § < & one has

— N —
Fpn < Fa (ﬂ’“;V’”#><FA+g' (A.8)
By (A.1l) one gets that fo% — pa > & there are two constants , > 0 such that
N N _
Fa <,3,M§V,V#) > a1+ az (V—PA—§)~ (A.9)

(4) (Large-deviation principle for the particle densjtyBy standard reasoning (see e.g.
[24, 25]) one gets from the grand-canonical distribution of particles and (A.7)—(A.9) that

N — —~B— _ LN #
pA,I=PA{0<7<pA—s}=<aﬁ)l Y efvhGurh

0<N <V (Bp—6)
< V(py — e PVt (A.10)
_ N _ B _ N
pA,”:]P)A{IOA_E<V<pA+§}>(Dﬁ) ! Z e V(B ")
V(BA—E)SN<V(@r+E)
> 2(88) L' Ve PVEFAtD) (A.11)
N = = — — ar+ar(X—p,—
DAILI :]P’A{V>p[\+€}<(aﬁ) 1 Z g BVlartaz(y—pa—8)] (A.12)
N2V (pp+§)
Sincepa; + pa.ar + parr = 1, these estimates imply that
||5:ﬂ PAII = 1 (A13)
forany & > 0.

(5) Now we can apply the large-deviation principle for the particle density in domain
D to obtain (3.19). Using the relation (3.35) fd* one readily gets

N
(A" AL THE (0", AT A) gy < 20(0) <A*7AA> — W(A*A) o - (A.14)
HE (%)

Since

N N
<A*—A > = <<—A — ﬁA> A*A> +EA(A*A)H£(V#) (A.15)
14 HE(%) 14 HE (%)
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we have to estimate from above the first term in the left-hand side of (A.15). To this end
we follow (A.10)—(A.13):

0
Ep) " N gy ) e raa N:v) <0, (A16
(Ex) Z V_pA € ( Yarwn (B, N3v™) < 0. (A.16)
0SN<V(p)—&)
(I
=By -1 PN ﬁ_— T —BHZ (V) 4
(ER) v~ Pa rry (€ ATA)
V(pa—8)SN<V(pp+§)

<288t Z &N Try, (e PHR0D A% A) = E(A™A) oy (B i v™).  (ALT)
N=0

(1)
—By\-1 N —BVFp [ g% L
@D D P ) eI A A sy (B NV

N2V (pr+8)

N _
<@EdT Y (V —m) e PVl ex B2 I2N + [elPV)
N2V (pr+8)

N _
— Z(Eﬁ)fl Z (V _ ﬁA) (N _ VﬁA)e*ﬁvale*ﬂaz(jv*v(p/ﬁ’é))
N2V (pp+§)
+2(Ei)_lv(51\ + |C|2)e—ﬁVa1 Z @ Paa(N=V(pr+8))
NZ2V(pa+§)

—1,.— z — _ —Vo
=pan@ Ve E Y (N - Vipy)te PNVt
NZV(pr+E)

+pa11V Epa + [c]Pe Ve > e PNVt  constant eV,
NV (a+6)
(A.18)

Combining (A.16)—(A.18) with (A.14) and (A.15) we find that for any compétt C
(110(B), 0), |v| < ro and compacty C R one has

(A*[A, [HZ (v, ATTIA) oy < alA™A) o + b (A.19)

for positive bounded:, » which depend orC,,, Cg, andro, i.e. fora, b locally bounded
in D.
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