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Exact solution of the Bogoliubov Hamiltonian for weakly
imperfect Bose gas

J-B Bru† and V A Zagrebnov‡
Centre de Physique Théorique§, CNRS Luminy, Case 907, F-13288 Marseille, Cedex 9, France

Received 17 February 1998, in final form 27 August 1998

Abstract. We show that the pressure of the Bogoliubov weakly imperfect Bose gas (WIBG)
can be calculated exactly in the thermodynamic limit. We point out the sufficient and necessary
conditions for it not to equate with the pressure of the ideal Bose gas (IBG). We prove that
they differ only in that part of the phase diagram where the WIBG has a Bose condensate. We
show that in contast to the conventional Bose condensate (e.g. in the IBG) the condensate in the
WIBG is due to an effective attraction between bosons in the zero-mode.

1. Introduction and set-up of the problem

A pragmatic procedure for the description of the properties of superfluids, e.g. derivation
of the experimentally observed spectra, was initiated in Bogoliubov’s classic paper [1] (see
also [2]), where he considered a Hamiltonian withtruncated interaction, giving rise to what
is called the Bogoliubov Hamiltonian for aweakly imperfect Bose gas(WIBG).

Consider a system of bosons of massm in a cubic box3 ⊂ R3 of volumeV = L3, with
periodic boundary conditions. Ifϕ(x) denotes an integrable two-body interaction potential
and

v(q) =
∫
R3

d3xϕ (x)e−iqx q ∈ R3 (1.1)

then its second-quantized Hamiltonian acting in the boson Fock spaceF3 can be written as

H3 =
∑
k

εka
∗
k ak +

1

2V

∑
k1,k2,q

v(q)a∗k1+qa
∗
k2−qak1ak2 (1.2)

where all sums run over the set3∗ defined by

3∗ =
{
k ∈ R3 : α = 1, 2, 3, kα = 2πnα

L
andnα = 0,±1,±2, . . .

}
. (1.3)

Here εk = h̄2k2/2m is the one-particle energy spectrum of the free bosons, anda#
k =

{a∗k , ak} are the usual boson creation and annihilation operators in the one-particle state
ψk(x) = V −

1
2 eikx, k ∈ 3∗, x ∈ 3; a∗k ≡ a∗(ψk) =

∫
3 dxψk (x)a∗(x); a#(x) are the

basic boson operators in the Fock spaceF3 over L2(3). If one supposes that Bose–
Einstein condensation, which occurs in the ideal Bose gas fork = 0, persists for a weak
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interactionϕ(x) then, according to Bogoliubov, the most important terms in (1.2) should
be those in which at least two operatorsa∗0, a0 appear. We are thus led to consider the
following truncatedHamiltonian (the Bogoliubov Hamiltonian for WIBG: see [2], part 3.5,
equation (3.81)):

HB
3 = T3 + UD

3 + U3 (1.4)

where

T3 =
∑
k∈3∗

εka
∗
k ak (1.5)

UD
3 =

v(0)

V
a∗0a0

∑
k∈3∗,k 6=0

a∗k ak +
1

2V

∑
k∈3∗,k 6=0

v(k)a∗0a0(a
∗
k ak + a∗−ka−k)+

v(0)

2V
a∗

2

0 a
2
0 (1.6)

U3 = 1

2V

∑
k∈3∗,k 6=0

v(k)(a∗k a
∗
−ka

2
0 + a∗

2

0 aka−k). (1.7)

HBD
3 ≡ (T3 +UD

3 ) represents thediagonal part of the Bogoliubov HamiltonianHB
3 while

U3 represents thenon-diagonalpart.

Remark 1.1.Below we impose the following assumptions on the two-body interaction
potentialϕ:

(A) ϕ ∈ L1(R3) (absolute integrability);
(B) v(k) is a real continuous function, satisfyingv(0) > 0 and 06 v(k) = v(−k) 6 v(0)

for k ∈ R3.
It is known [3, 4] that under these (and in fact, even weaker) conditions the potential

ϕ is superstable. Hence the grand-canonical partition function associated with the full
Hamiltonian (1.2)

43(β,µ) = TrF3(e
−β(H3−µN3)) (1.8)

and the finite-volume pressure

p3[H3] ≡ p3(β, µ) = 1

βV
ln43(β,µ) (1.9)

are finite for all real chemical potentialsµ and all inverse temperaturesβ > 0.

However, this isnot true for the Bogoliubov Hamiltonian (1.4).

Proposition 1.2.[5] Let 4B3(β, µ) be the grand-canonical partition function associated with
the Hamiltonian (1.4). Then,

(a) the Bogoliubov model of WIBG is stable (4B3(β, µ) < +∞) for µ 6 0 and is
unstable (i.e.4B3(β, µ) = +∞) for µ > 0.

(b) Forµ 6 µ∗ = − 1
2ϕ(0) the pressure

pB(β, µ) = lim
3
p3[HB

3 ] (1.10)

coincides with the pressure of the ideal Bose gas (IBG)

pI (β, µ) = lim
3
p3[T3]. (1.11)

A simple proof of (a) follows from estimates (2.6) and (2.10) below. For the proof of
(b) see remark 2.4 and corollary 2.5. Moreover, paper [5] contains the following conjecture.

Conjecture 1.3.The Bogoliubov HamiltonianHB
3 is exactly soluble in the sense that WIBG

is thermodynamically equivalent (in the grand-canonical ensemble) to the IBG for all
chemical potentialµ 6 0. This precisely means that

pB(β, µ 6 0) = pI (β, µ 6 0). (1.12)
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The aim of this paper is threefold. First, to show that the phase diagram of the
Bogoliubov model (1.4) is less trivial than as expressed by conjecture 1.3 and that it
drastically depends on the interaction potential (1.1); secondly, to find necessary and
sufficient conditions for the interaction which guarantee that WIBG differs from IBG; and
thirdly, to calculate exactlypB(β, µ) in the domain where it does not coincide withpI (β, µ).

Our results are organized as follows. In section 2, we show that

pBD(β, µ 6 0) = lim
3
p3[HBD

3 ] = pI (β, µ 6 0) (1.13)

that is, the thermodynamics of thediagonal part of the Bogoliubov Hamiltonian and that
of the ideal Bose gas coincide, while the Bose condensation is closer to ageneralized
condensation, see [6, 7], which occurs atk 6= 0. This means in particular that the
thermodynamicnon-equivalencebetween the Bogoliubov Hamiltonian and the IBG is due
to non-diagonalterms of interaction (1.7). We also study conjecture 1.3. We show that for
any interaction which satisfies (A) and (B) there is a domain0 of the phase diagram (plane
Q = (µ 6 0, θ = β−1 > 0)) where indeed

pB(β, µ < 0) = pI (β, µ < 0). (1.14)

We then formulate a sufficient condition on the interactionv (k) to ensure the existence of
domainD0 ⊂ Q where

pB(β, µ) 6= pI (β, µ). (1.15)

In fact we show that this is equivalent to the statement that the systemHB
3 manifests in this

domain a (non-conventional) Bose condensation due toeffective attractionbetween bosons
with k = 0.

The thermodynamic limit of the pressure (1.10) of the systemHB
3 in domainD ⊇ D0

defined by

pB(β, µ) 6= pI (β, µ) (1.16)

is studied in section 3. We give an exact formula forpB(β, µ), demonstrating its relation to
the concept of the Bogoliubov approximation as outlined by Ginibre [4]. By corollary we
establish thatD = D0. In section 4 we study the breaking of the gauge symmetry and the
behaviour of the (non-conventional) Bose condensate, i.e. the phase diagram of the WIBG.
We reserve section 5 for concluding remarks and discussions.

2. Bogoliubov weakly imperfect Bose gas versus ideal Bose gas

2.1. Diagonal part of the Bogoliubov Hamiltonian

The diagonal part of the Bogoliubov HamiltonianHBD
3 = (T3+UD

3 ), as in (1.5) and (1.6),
can be rewritten using the occupation-number operators for modesk ∈ 3∗, nk = a∗k ak. So,
the HamiltonianHBD

3 (µ) ≡ HBD
3 − µN3 becomes

HBD
3 (µ) =

∑
k∈3∗

(εk − µ)a∗k ak +
v(0)

V
a∗0a0

∑
k∈3∗,k 6=0

a∗k ak

+ 1

2V

∑
k∈3∗,k 6=0

v(k)a∗0a0(a
∗
k ak + a∗−ka−k)+

v(0)

2V
a∗

2

0 a
2
0 (2.1)
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whereN3 =
∑

k∈3∗ a
∗
k ak. If v(k) satisfies (B), then one obviously obtains

HBD
3 (µ) =

∑
k∈3∗

(εk − µ)nk + v(0)
V
n0N3 − v(0)

2V
(n2

0+ n0)+ 1

V

∑
k∈3∗,k 6=0

v(k)n0nk (2.2)

> T3(µ) ≡ T3 − µN3. (2.3)

Theorem 2.1.Let v(k) satisfy (A) and (B). Then
(a) for anyµ 6 0 andβ > 0 one has

pBD(β, µ) ≡ lim
3
p3[HBD

3 ] = pI (β, µ) (2.4)

(b) for anyβ > 0 one has

pBD(β, µ > 0) = +∞.

Proof. (a) By virtue of expression (2.2) and the inequality (2.3) we find that the partition
function

4BD3 (β, µ) = TrF3 e−βH
BD
3 (µ) 6 TrF3 e−βT3(µ) = 4I3(β, µ).

Hence, for anyµ < 0

p3[HBD
3 ] 6 p3[T3]. (2.5)

By (2.2), we can calculate TrF3 on the basis of occupation-number operators:

4BD3 (β, µ) =
∞∑
n0=0

{
e[−β( v(0)2V (n

2
0−n0)−µn0)]

∏
k∈3∗,k 6=0

(1− e[−β(εk−µ+ [v(0)+v(k)]
V

n0)])−1

}
which gives the estimate

4BD3 (β, µ) >
∏

k∈3∗,k 6=0

(1− e[−β(εk−µ)])−1.

Therefore,

p3[HBD
3 ] > p̃I3(β, µ) ≡

1

βV

∑
k∈3∗,k 6=0

ln[(1− e[−β(εk−µ)])−1]. (2.6)

Note thatp̃I3(β, µ) is the pressure of an ideal Bose gas withexcludedmodek = 0 and
p̃I3(β, µ) < +∞ for µ < infk 6=0 εk. Hence, for anyµ < 0 one gets

lim
3
p̃I3(β, µ) = lim

3
p3[T3] = pI (β, µ). (2.7)

Therefore, taking the thermodynamic limits as in (2.5)–(2.7) we first solve (2.4) forµ < 0.
Then taking limitµ→ 0− one solves (2.4) forµ = 0.

(b) is proved directly from estimate (2.6). �

Corollary 2.2. Since functions{pBD3 (β, µ) ≡ p3[HBD
3 ]}3⊂Rd are convex forµ 6 0 and the

limit pI (β, µ) is differentiable forµ < 0, by Griffiths’ lemma [8]

lim
3
∂µp

BD
3 (β, µ) = ∂µpI (β, µ)

i.e. the particle density of the system (2.1) coincides with that of the IBG:

ρBD(β, µ) ≡ lim
3

〈
N

V

〉
HBD
3

(β, µ) = ∂µpI (β, µ) ≡ ρI (β, µ). (2.8)

Here 〈−〉H3(β, µ) corresponds to the grand-canonical Gibbs state for HamiltonianH3.
Taking in (2.8) the limitµ→ 0− we extend this equality toµ ∈ (−∞, 0].
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From (2.4) and (2.8) we see that the diagonal part of the Bogoliubov HamiltonianHBD
3

is thermodynamically equivalent toT3. A generalized Bose condensationin the system
(2.1) coincides with that for the ideal Bose gas with excluded modek = 0, [6, 7]. Below
we show that it is thenon-diagonal interaction (1.7) that makes the essential difference
between WIBG and IBG.

2.2. Domain0: pB(β, µ) = pI (β, µ)
As with IBG, the Bogoliubov WIBG exists only forµ 6 0 (see proposition 1.2). In fact
we can go further (cf [5]).

Lemma 2.3.For anyµ 6 0, one has

pI (β, µ) 6 pB(β, µ). (2.9)

Proof. By the Bogoliubov inequality (see e.g. [3, 9]), one knows that for anyµ 6 0,

1

V
〈U3〉HB

3
6 p3[HBD

3 ] − p3[HB
3 ] 6 1

V
〈U3〉HBD

3
. (2.10)

Since 1
V
〈U3〉HBD

3
= 0, combining (2.6), (2.7) and (2.10) we obtain (2.9) in the

thermodynamic limit by the continuous extensionµ→ 0− of pI (β, µ) for µ 6 0. �

Remark 2.4.Let v(k) satisfy (A) and (B). Then regrouping terms in (1.6), (1.7) one gets

HB
3 = H̃3 +

1

2V

∑
k∈3∗,k 6=0

v(k)(a∗0ak + a∗−ka0)
∗(a∗0ak + a∗−ka0) > H̃3 (2.11)

where

H̃3 =
∑

k∈3∗,k 6=0

(
εk − v(k)

2V
+ v(0)

V
n0

)
nk + v(0)

2V
n2

0−
1

2
ϕ(0)n0. (2.12)

Hence, by (2.11) and (2.12) we obtain in the thermodynamic limit forµ 6 0

pB(β, µ) 6 lim
3
p3[H̃3] = sup

ρ0>0
G(β,µ; ρ0). (2.13)

Here

G(β,µ; ρ0) ≡
[
−v(0)

2
ρ2

0 + (µ+ 1
2ϕ(0))ρ0+ pI (β, µ− v(0)ρ0)

]
. (2.14)

Corollary 2.5. [5] If µ 6 − 1
2ϕ(0), then supρ0>0G(β,µ; ρ0) = pI (β, µ). Therefore, by

lemma 2.3 and inequality (2.13 ) we get

pB(β, µ) = pI (β, µ) for 0µ∗ = {θ > 0, µ 6 − 1
2ϕ(0) ≡ µ∗}. (2.15)

The next statement extends the domain0µ∗ , (see figure 1) of proposition 1.2.

Theorem 2.6.Let v(k) satisfy (A) and (B) and let

h(z, β) ≡ z+ v(0)

(2π)3

∫
R3

d3k (e[β(εk+z)] − 1)−1. (2.16)

Then we have

pB(β, µ) = pI (β, µ) for (θ, µ) ∈ 0 (2.17)

where

0 =
{
(θ, µ) : 1

2ϕ(0) 6 inf
z>−µ

h(z, β)
}
⊂ Q. (2.18)
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Figure 1. (1) Phase diagram of the Bogoliubov WIBG. (2) Estimation of the phase diagram
given in [5] and in section 2. Note that deviation of the boundary∂0 from the straight lines
∂0µ∗ , ∂0θ∗ is exaggerated in the vinicity of(µ∗, θ∗). Numerical estimates giveµ∗/µ0 ∼ 103,
θ∗/θ0 ∼ 10.

Proof. By virtue of (2.9), (2.13) and (2.14), the equality (2.17) is ensured by

sup
ρ0>0

G(β,µ; ρ0) = G(β,µ; ρ0 = 0). (2.19)

If ∂ρ0G(β,µ; ρ0) 6 0 or equivalently1
2ϕ(0) 6 h(v(0)ρ0−µ, β) for ρ0 > 0, then sufficient

condition (2.18) guarantees (2.19) and hence (2.17). �

Corollary 2.7. Sinceh(z, β) is a convex function ofz > 0 andh(z, β) > z, then by (2.16)
we get

λ(θ) 6 inf
z>−µ

h(z, β) (2.20)

where

λ(θ) ≡ inf
z>0
h(z, β). (2.21)

Therefore, by (2.20) we get a sufficient condition independent ofµ 6 0 (high-temperature
domain, see figure 1):

0θ∗ = {(θ, µ 6 0) : 1
2ϕ(0) ≡ λ(θ∗) 6 λ(θ)} (2.22)

which ensures (2.17).

Remark 2.8.Note that the inequalityh(z, β) > z and (2.18) implies (2.15) for−µ > 1
2ϕ(0),

i.e.0µ∗ ⊂ 0. On the other hand, (2.18) forµ = 0 implies (2.22), i.e.0θ∗ ⊂ 0, see figure 1.

Remark 2.9.Since∂v(0)λ(θ) > 0, one can always ensure (2.22) for a fixed temperatureθ ,
by increasingv(0) without changingϕ(0).
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Remark 2.10.Note thatpI (β = +∞, µ) = 0 and thatλ(θ = 0) = 0. Therefore, at zero
temperature the sufficient condition (2.18) reduces to (2.15), see figure 1. In fact this part
of 0 is known from [5]. Theorem 2.6 shows that conjecture 1.3 can be extended at least to
the domain0 (2.18).

Below we show that this conjecture isnot valid in the complementQ\0, see figure 1.

2.3. DomainD: pB(β, µ) 6= pI (β, µ)
Let H03 ⊂ L2(3) be the one-dimensional subspace generated byψk=0 (see section 1).
Then the Fock spaceF3 is isomorphic to the tensor productF3 ≈ F03 ⊗ F ′3 whereF03

andF ′3 are the boson Fock spaces constructed out ofH03 and of its orthogonal complement
H⊥03 respectively. For any complexc ∈ C, we can define inF03 a coherent vector

ψ03(c) = e−V |c|
2/2

∞∑
k=0

1

k!
(
√
V c)k(a∗0)

k�0 (2.23)

where�0 is the vacuum ofF3. Thena0ψ03(c) =
√
V cψ03(c).

Definition 2.11.[4] The Bogoliubov approximation for a HamiltonianH3(µ) ≡ H3−µN3
in F3 is the operatorH3(c#, µ) defined inF ′3 by its quadratic form

(ψ ′1, H3(c
#, µ)ψ ′2)F ′3 = (ψ03(c)⊗ ψ ′1, H3(µ)ψ03(c)⊗ ψ ′2)F3 (2.24)

for ψ03(c)⊗ ψ ′1,2 in the form-domain ofH3(µ), wherec# = (c, c).
This formulation of the Bogoliubov approximation [1, 2] provides an estimate for the

pressurep3[HB
3 ] from below which allows us to refine (2.9).

Proposition 2.12.[5] For any(θ, µ) ∈ Q one has

sup
c∈C

p̃B3(β, µ; c#) 6 p3[HB
3 ] (2.25)

where

p̃B3(β, µ; c#) ≡ 1

βV
ln TrF ′3 e−βH

B
3 (c

#,µ). (2.26)

Remark 2.13.By definition 2.11 we get from (1.4)–(1.7) that

HB
3 (c

#, µ) =
∑

k∈3∗,k 6=0

[εk − µ+ v(0)|c|2]a∗k ak + 1
2

∑
k∈3∗,k 6=0

v(k)|c|2[a∗k ak + a∗−ka−k]

+ 1
2

∑
k∈3∗,k 6=0

v(k)[c2a∗k a
∗
−k + c2aka−k] − µ|c|2V + 1

2v(0)|c|4V. (2.27)

Therefore, after diagonalization one can calculate (2.26) in the explicit form:

p̃B3(β, µ; c#) = ξ3(β, µ; x)+ η3(µ; x)
ξ3(β, µ; x) = 1

βV

∑
k∈3∗,k 6=0

ln(1− e−βEk )−1

η3(µ; x) = − 1

2V

∑
k∈3∗,k 6=0

(Ek − fk)+ µx − 1
2v(0)x

2

(2.28)

whereEk andfk are functions ofx = |c|2 > 0 andµ 6 0:

fk = εk − µ+ x[v(0)+ v(k)]
hk = xv(k)
Ek =

√
f 2
k − h2

k.

(2.29)
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Now the strategy of localization of the domainD0 (see figure 1) becomes clear: by
virtue of (2.9) and (2.25) one comes to describe the set of(θ, µ) ∈ Q such that

pI (β, µ) < lim
3

[
sup
c∈C

p̃B3(β, µ; c#)
]
. (2.30)

Proposition 2.14.[5] Let v(k) satisfy (A), (B) and

v(0) > 1

2(2π)3

∫
R3

d3k
[v(k)]2

εk
. (2.31)

Then, cf (2.6),

sup
c∈C

p̃B3(β, µ; c#) = p̃B3(β, µ; 0) = p̃I3(β, µ).

Therefore, in the thermodynamic limit (see (2.7)) we get

lim
3

[
sup
c∈C

p̃B3(β, µ; c#)
]
= pI (β, µ). (2.32)

Lemma 2.15.Let v(k) satisfy (A), (B) and the condition (C):

v(0) <
1

2(2π)3

∫
R3

d3k
[v(k)]2

εk
. (2.33)

Then, there isµ0 < 0 such that

lim
3

(
sup
x>0

η3(µ; x)
)
= η(µ; x(µ) > 0) > 0 for µ ∈ (µ0, 0]. (2.34)

Proof. By the explicit formulae (2.28) and (2.29) we readily find that forµ 6 0:
(a) η3(µ; x = 0) = 0 andη3(µ; x) 6 constant− 1

2v(0)x
2

(b) ∂xη3(µ; x = 0) = µ and

∂2
xη3(µ; x = 0) = 1

2V

∑
k∈3∗,k 6=0

[v(k)]2

(εk − µ) − v(0).

Since

lim
3

1

2V

∑
k∈3∗,k 6=0

[v(k)]2

(εk − µ) =
1

2(2π)3

∫
R3

d3k
[v(k)]2

(εk − µ)
the condition (2.33) implies the existence ofµ̃ < 0 such that

lim
3
∂2
xη3(µ > µ̃; x = 0) > 0.

By virtue of (a), (b), and lim3 ∂xη3(µ = 0; x = 0) = 0 this means that

lim
3

(
sup
x>0

η3(µ = 0; x)
)
= η(µ = 0; x(µ = 0) > 0) > 0. (2.35)

Therefore, by continuity of (2.35) on the interval(µ̃, 0] we get the existence ofµ0 : µ̃ 6
µ0 < 0, such that one has (2.34). �

Theorem 2.16.Let v(k) satisfy (A)–(C). Then, for anyµ ∈ (µ0, 0], there isθ0(µ) > 0 such
that one has (see figure 1):

pI (β, µ) < pB(β, µ) in D0 ≡ {(θ, µ) : µ0 < µ 6 0, 06 θ < θ0(µ)} (2.36)

whereµ0 is defined by lemma 2.15. In fact the domainD0 coincides with

D0 =
{
(θ, µ) : lim

3
sup
c∈C

p̃B3(β, µ; c#) > pI (β, µ)
}
.
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Figure 2. Illustration of the Bogoliubov approximation variational problem: the behaviour of the
difference between the trial pressurep̃B(β, µ; x) for the WIBG and the IBG pressurepI (β, µ)
as a function of the variational parameterx = |c|2 for different values of(θ, µ). Non-trivial
suprema are indicated by empty circles.

Proof. First we note that by (2.28) and (2.29) one hasξ3(β, µ; x = 0) = p̃I3(β, µ) and
that in addition:
(i) ∂xξ3(β, µ; x) 6 0 and lim

x→+∞ ξ3(β, µ; x) = 0 for any3

(ii) ∂θξ3(β, µ; x) > 0 and lim
θ→0

ξ3(β, µ; x) = 0 for any3.
(2.37)

Next, by lemma 2.15 forµ = µ0 < 0 we have

lim
3

(
sup
x>0

η3(µ0; x)
)
= η(µ0; 0) = η(µ0; x(µ0) > 0) = 0. (2.38)

Hence, according to (2.37) and (2.38) one obtains:

(iii) θ > 0 : lim
3

[
sup
c∈C

p̃B3(β, µ0; c#)
]
= sup

x>0
[ξ(β, µ0; x)+ η(µ0; x)]

= p̃B(β, µ0; c# = 0) = pI (β, µ) (2.39)

and by (2.37), (ii) and (2.38), we obtain:

(iv) θ = 0 : lim
3

[
sup
c∈C

p̃B3(β = ∞, µ0; c#)
]
= p̃B(β = ∞, µ0; c# = 0)

= p̃B(β = ∞, µ0; c#)||c|2=x(µ0)>0 = 0

see figures 1 and 2.
Now by (2.28), (2.37) and lemma 2.15 one obtains that forµ0 < µ 6 0

lim
3

[
sup
c∈C

p̃B3(β, µ > µ0; c#)
]
> η(µ > µ0; x(µ) > 0) > 0. (2.40)
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Since by (2.37) (ii) the pressurepI (β, µ 6 0) is monotonously decreasing forθ ↘ 0, there
is a temperatureθ0(µ)such that forθ < θ0(µ > µ0) we get from (2.40)

pI (β > β0(µ), µ > µ0) < η(µ > µ0; x(µ) > 0) < lim
3

[
sup
c∈C

p̃B3(β > β0(µ), µ > µ0; c#)
]
.

(2.41)

Then (2.25) and (2.41) imply (2.36) for(θ, µ) ∈ D0 which is equivalent to (2.30). �

Corollary 2.17.Let

D ≡ {(θ, µ) : pB(β, µ) > pI (β, µ)}. (2.42)

Then by (2.25) and (2.36) one obviously gets

D ⊇ D0 = {(θ, µ) : µ0 < µ 6 0, 06 θ < θ0(µ)}.
Hereµ0 < 0 is defined in lemma 2.15 andθ0(µ) in theorem 2.16.

Remark 2.18.The condition (C) defined by (2.33) is sufficient to guarantee thatµ0 < 0, i.e.
D ⊇ D0 6= {∅}. On the other hand, the contrary condition (2.31) implies only the triviality
(2.32) of the lower bound (2.25) forpB(β, µ) but notD = {∅}, see lemma 2.3 and (2.30).

Therefore, for the moment we do not know whether condition (C) isnecessaryfor
D 6= {∅}. We postpone seeking the answer to this question until section 3. Below we
remark on a relation between conditions (2.31) and (2.33) (which result from a rather
restricted analysis of convexity and monotonicity of thep̃B3(β, µ; c#) in the vicinity of
x = 0) and the condition (2.15), which gives triviality to the upper bound (2.13) for
pB(β, µ) for all temperatures (see figure 1).

Remark 2.19.Let v(k) satisfy (A)–(C). Then there is̃µ < 0 such that forµ 6 µ̃ one has

v(0) > 1

2(2π)3

∫
R3

[v(k)]2

(εk − µ) d3k (2.43)

and in consequence∂2
xη(µ 6 µ̃; x = 0) 6 0 (see the proof of lemma 2.15). One can

represent the inequality (2.43) as∫
R3

d3k

(2π)3
v(k)

{
v(k)

2(εk − µ) −
v(0)

ϕ(0)

}
6 0. (2.44)

Since by (B) and byµ 6 0 we have

v(k)

2(εk − µ) 6
v(0)

(−2µ)

the conditionµ < − 1
2ϕ(0) ≡ µ∗ ( 2.15) implies (2.44), i.e.µ∗ 6 µ̃, see figures 1 and

2. Therefore, a local convexity condition (2.43) forη3(µ; x) is intimately related to the
condition ensuringpB(β, µ) = pI (β, µ). In particular, notice that for the condition (2.31)
the inequality (2.43) is valid for anyµ 6 0.

We conclude this section with a simple and important theorem for characterization of
domainD (cf (2.42)).

Theorem 2.20.Let

ρB0 (β, µ) ≡ lim
3

〈
a∗0a0

V

〉
HB
3

(β, µ) (2.45)

be the density of the Bose condensate in the Bogoliubov WIBG (1.4). Then

D = {(θ, µ) ∈ Q : ρB0 (β, µ) > 0}. (2.46)
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Proof. Put

Ĥ B
3 ≡ HB

3 + 1
2ϕ(0)a

∗
0a0. (2.47)

Then by remark 2.4 we get

lim
3
p3

[
Ĥ B
3

]
6 sup

ρ0>0
{G(β,µ; ρ0)− 1

2ϕ(0)ρ0} = pI (β, µ). (2.48)

By the Bogoliubov inequality forHB
3 andĤ B

3 one has

p3[HB
3 ] − ϕ(0)

2

〈
a∗0a0

V

〉
HB
3

6 p3[Ĥ B
3 ]. (2.49)

Hence, by virtue of (2.9), (2.48) and (2.49) we get in the thermodynamic limit that

pI (β, µ)− ϕ(0)
2
ρB0 (β, µ) 6 pB(β, µ)−

ϕ(0)

2
ρB0 (β, µ) 6 pI (β, µ).

Therefore,pB(β, µ) = pI (β, µ) if and only if ρB0 (β, µ) = 0, which gives (2.46). �

Remark 2.21.The observation thatpB(β, µ) 6= pI (β, µ) only when ρB0 (β, µ) 6= 0 is
very similar to what is known since Bogoliubov theory of superfluidity [1, 2]. An
essential difference is that in the Bogoliubov theory the gapless spectrum occurs for a
positive chemical potentialµ = v(0)ρB0 where the system corresponding to the Bogoliubov
Hamiltonian for WIBG is unstable. For further discussion see [5, 10, 11] and section 5.

3. Exactness of the Bogoliubov approximation

Since the pressurepB(β, µ) 6= pI (β, µ) only in domainD, where the Bose condensate
ρB0 (β, µ) > 0, the aim of this section is to identifypB(β, µ) in this domain. Below we
shall show that

pB(β, µ) = lim
3

[
sup
c∈C

p̃B3(β, µ; c#)
]
= sup

c∈C
p̃B(β, µ; c#) (3.1)

and that in fact (cf (2.36) and (2.42)) one has

D = D0. (3.2)

Therefore, the condition (C) (2.33) issufficientandnecessaryforD 6= {∅} (see remark 2.18).
By definition of p̃B(β, µ; c#), (see (2.25)–(2.28)), the statement (3.1) means that the
Bogoliubov approximation for the WIBG isexact. Sincep̃B3(β, µ; c#) is known explicitly,
the statement (3.1) gives theexact solutionof thermodynamics of this model.

In section 2 we showed that it is the non-diagonal partU3 (1.7) of the Bogoliubov
Hamiltonian (1.4) that ensures thatpB(β, µ) 6= pI (β, µ) in domain D 6= {∅}. The
interactionU3 is known to beeffectively attractive[5], and given condition (C), it prevails
over the term of direct repulsive interaction between bosons for the modek = 0 (see (1.6))
[12]. Therefore, to prove (3.1) we use the approximation Hamiltonian method originally
invented for quantum systems with attractive interactions (see e.g. [9]).

Remark 3.1.This method was adapted by Ginibre [4] to prove the exactness of the
Bogoliubov approximation for a non-ideal Bose gas (1.2) with superstable interaction, which
is the case ofv(q) satisfying (B). But after truncation of (1.2) the HamiltonianHB

3 (1.4)
for WIBG is not superstable. By proposition 1.2, the system (1.4) is unstable forµ > 0.
Below we follow the approximation Hamiltonian method as used by Ginibre, improved for
the WIBG.
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Since in the approximating HamiltonianHB
3 (c

#, µ) (2.27) the gauge symmetry is broken,
we introduce

HB
3 (ν

#) = HB
3 −
√
V (νa0+ νa∗0)

HB
3 (µ, ν

#) = HB
3 (ν

#)− µN3
(3.3)

with sourcesν ∈ C breaking the symmetry ofHB
3 , hereν# = (ν, ν). Then by proposition

2.12 and the Bogoliubov inequality forHB
3 (µ, ν

#) andHB
3

(
c#, µ, ν#

)
one gets:

06 13(β,µ; c#, ν#) ≡ p3[HB
3 (ν

#)] − p̃B3(β, µ; c#, ν#)

6 1

V
〈HB

3 (c
#, µ, ν#)−HB

3 (µ, ν
#)〉HB

3 (ν
#). (3.4)

Let A ≡ a0−
√
V c,A∗ ≡ a∗0 −

√
V c. Then a Taylor expansion arounda#

0 gives:

HB
3 (c

#, µ, ν#)−HB
3 (µ, ν

#) = −A∗[a0, H
B
3 (µ, ν

#)] + h.c.+ 1
2A
∗2

[a0, [a0, H
B
3 (µ, ν

#)]]

+ h.c.+ A∗[a0, [HB
3 (µ, ν

#), a∗0]]A− 1
2A
∗2

[a0, [a0, [HB
3 (µ, ν

#), a∗0]]]A

+ h.c.+ 1
4A
∗2

[a0, [a0, [[HB
3 (µ, ν

#), a∗0]a∗0]]]A2. (3.5)

Remark 3.2.Explicit calculations show that the third and the fourth order terms in (3.5) are
bounded from above:

−v(0)√
V
(cA∗AA+ cA∗A∗A)− v(0)

2V
A∗

2
A2 = 2v(0)|c|2A∗A

−v(0)
2V

(A2+ 2
√
V cA)∗(A2+ 2

√
V cA) 6 2v(0)|c|2A∗A. (3.6)

Remark 3.3.After some algebra, the terms of the first and the second order in (3.5) can be
combined in

− 1
2[A∗A, [HB

3 (µ, ν
#), A∗A]] + 2A∗[A, [HB

3 (µ, ν
#), A∗]]A

− 3
2A
∗[A,HB

3 (µ, ν
#)] − 3

2[HB
3 (µ, ν

#), A∗]A. (3.7)

Lemma 3.4.One has the following inequality:

〈[A∗A, [HB
3 (µ, ν

#), A∗A]] 〉HB
3 (ν

#) > 0. (3.8)

Proof. Denote by (.,.)H3 the positive semidefinite scalar product with respect to a
HamiltonianH3 (see e.g. [13]):

(X, Y )H3 ≡
1

β43(β,µ)

∫ β

0
dτ TrF3(e

−(β−τ)H3(µ)X∗e−τH3(µ)Y ). (3.9)

Then(1, Y )H3 = 〈Y 〉H3 and

β([X,H3(µ)], [X,H3(µ)])H3 = 〈[X, [H3(µ),X
∗]] 〉H3. (3.10)

Applying (3.10) toH3(µ) = HB
3 (µ, ν

#) andX = A∗A one gets (3.8). �

Lemma 3.5.One has the following estimate:

−2〈A∗[A,HB
3 (µ, ν

#)]〉HB
3 (ν

#) 6 〈[A∗, [HB
3 (µ, ν

#), A]] 〉HB
3 (ν

#)

+〈[A∗, [HB
3 (µ, ν

#), A]] ∗〉HB
3 (ν

#) + 2β−1〈{A,A∗}〉HB
3 (ν

#) (3.11)

where{X, Y } ≡ XY + YX.



Exact solution of the Bogoliubov Hamiltonian 9389

Proof. By the spectral decomposition of the Hamiltonian(HB
3 (µ, ν

#)ψn = Enψn) one gets

〈{A∗, [HB
3 (µ, ν

#), A]}〉HB
3 (ν

#) =
1

4B3(β, µ, ν
#)

∑
m,n

|(ψm,Aψn)|2(Em − En)(e−βEn + e−βEm).

(3.12)

Since

1
2(e

x + ey)− 1
2|ex − ey | 6 ex − ey

x − y 6
1
2(e

x + ey) (3.13)

one gets

β(Em − En)(e−βEn + e−βEm) 6 2(e−βEn − e−βEm)+ β(Em − En)|e−βEn − e−βEm |
6 2(e−βEn + e−βEm)+ β(Em − En)(e−βEn − e−βEm). (3.14)

Inserting the estimate (3.14) into (3.12) we obtain

〈{A∗, [HB
3 (µ, ν

#), A]}〉HB
3 (ν

#) 6 2β−1〈AA∗ + A∗A〉HB
3 (ν

#) + 〈[A∗, [HB
3 (µ, ν

#), A]] 〉HB
3 (ν

#).

(3.15)

Note that

−2〈A∗[A,HB
3 (µ, ν

#)]〉HB
3 (ν

#) = 〈[A∗, [HB
3 (µ, ν

#), A]] 〉HB
3 (ν

#)

+〈{A∗, [HB
3 (µ, ν

#), A]}〉HB
3 (ν

#). (3.16)

Then combining (3.15) and (3.16) one gets (3.11). �

Corollary 3.6. Since

〈A∗[A,HB
3 (µ, ν

#)]〉HB
3 (ν

#) = 〈[HB
3 (µ, ν

#), A∗]A〉HB
3 (ν

#)

by the estimate (3.11) the mean value of the last two terms of (3.7) is bounded from above:

−3〈A∗[A,HB
3 (µ, ν

#)]〉HB
3 (ν

#) 6 3
2〈[A∗, [HB

3 (µ, ν
#), A]] + h.c.〉HB

3 (ν
#)

+3β−1〈AA∗ + A∗A〉HB
3 (ν

#). (3.17)

Since we are looking for the estimate of (3.5) (and consequently of (3.7)) fromabove,
the inequalities (3.8) and (3.17) show that it remains only to estimate the mean value of the
second term in (3.7). Here we formulate the result; the proof is postponed until appendix A.

Theorem 3.7.Let (θ, µ) ∈ D Then there are two non-negative, locally bounded inD
functions

a = a(θ, µ, ν#)

b = b(θ, µ, ν#)
(3.18)

such that for|ν| 6 r0, r0 > 0, one has:

〈A∗[A, [HB
3 (µ, ν

#), A∗]]A〉HB
3 (ν

#) 6 a〈A∗A〉HB
3 (ν

#) + b. (3.19)

To prove the next statement (theorem 3.14) we need first to prove the following lemmas.

Lemma 3.8.For (θ, µ) ∈ Q andν ∈ C we have

p3[HB
3 (ν

#)] 6 p̃I3(β, µ)+
{

1

βV

∞∑
n0=0

e
β

2 [(ϕ(0)+2)n0−v(0)n2
0/V ]

}
+ |ν|2. (3.20)
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Proof. By the inequality

−
√
V (νa0+ νa∗0) > −a∗0a0− |ν|2V

(3.20) follows immediately from the estimate (cf (2.11) and (2.12))

HB
3 (ν

#)− µN3 >
∑

k∈3∗,k 6=0

(
εk − µ− v(k)

2V

)
nk + v(0)

2V
n2

0− (µ+ 1
2ϕ(0)+ 1)n0− |ν|2V.

�

Corollary 3.9. By (3.20), in the thermodynamic limit, one gets

pB(β, µ; ν#) 6 pI (β, µ)+ 1
2 sup
ρ>0

[(ϕ(0)+ 2)ρ − v(0)ρ2] + |ν|2 (3.21)

for (θ, µ) ∈ Q, ν ∈ C.

Lemma 3.10.For anyµ < 0 andν ∈ C one has the estimate〈
N3

V

〉
HB
3 (ν

#)

6 g3(β, µ; ν#) <∞. (3.22)

Proof. For anyµ < 0 there isδ > 0 such thatµ + δ < 0. Then by the Bogoliubov
inequality we obtain

δ

〈
N3

V

〉
HB
3 (ν

#)

6 p3[HB
3 (ν

#)− δN3] − p3[HB
3 (ν

#)]. (3.23)

Therefore, by lemma 3.8 one gets (3.22) for

g3(β, µ; ν#) ≡ 1

δ
(pB3(β, µ+ δ; ν#)− pB3(β, µ; ν#)). (3.24)

�

Corollary 3.11. In the thermodynamic limit (3.24) gives

ρB(β, µ; ν#) = lim
3

〈
N3

V

〉
HB
3 (ν

#)

6 1

δ
(pB(β, µ+ δ; ν#)− pB(β, µ; ν#)) ≡ g(β, µ; ν#).

(3.25)

In fact, forµ < 0, ν ∈ C, we have that

ρB(β, µ; ν#) = ∂µpB(β, µ; ν#) (3.26)

by Griffiths’ lemma [8].

Corollary 3.12.By virtue of (3.22) one obviously obtains:〈
a∗0a0

V

〉
HB
3 (ν

#)

6 g3(β, µ; ν#);
∣∣∣∣∣
〈
a∗0√
V

〉
HB
3 (ν

#)

∣∣∣∣∣ =
∣∣∣∣∣
〈
a∗0√
V

〉
HB
3 (ν

#)

∣∣∣∣∣ 6 √g3(β, µ; ν#). (3.27)

Remark 3.13.To optimize the estimate (3.4) we have to look for supc∈C p̃
B
3(β, µ; c#, ν#).

Since by definition 2.11 and (3.3)

HB
3 (c

#, µ, ν#) = HB
3 (c

#, µ)− V (νc + νc) > HB
3 (c

#, µ)− V (|ν|2|c|2+ 1) (3.28)

from (2.28) one has that for any(θ, µ) ∈ Q and a fixedν# there isA > 0 such that

p̃B3(β, µ; c#, ν#) 6 A− 1
2v(0)|c|4. (3.29)

Thus for any compactK ⊂ Q× {ν ∈ C}, the optimal value of|c| is bounded by a positive
constantMK <∞.
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Now we are in position to prove the main statement of this section (see (3.1)) about
exactnessof the Bogoliubov approximation for the WIBG.

Theorem 3.14.Let (θ, µ) ∈ D. Then

lim
3

{
pB3(β, µ, ν

#)− sup
c∈C

p̃B3(β, µ; c#, ν#)
}
= 0 (3.30)

locally uniformly inD for |ν| 6 r0, r0 > 0.

Proof. From the main inequality (3.4) one obtains

06 inf
c∈C

13(β,µ; c#, ν#) ≡ 13(β,µ; ĉ#
3(β, µ, ν

#), ν#) 6 1

V
〈HB

3 (c
#, µ, ν#)

−HB
3 (µ, ν

#)〉HB
3 (ν

#). (3.31)

By virtue of (3.5)–(3.7), estimates (3.6), (3.8), (3.11), (3.17), (3.19) and remark 3.13, there
are positive constantsu andw independent of the volumeV , such that

1

V
〈HB

3 (c
#, µ, ν#)−HB

3 (µ, ν
#)〉HB

3 (ν
#) 6 u+

w

2
〈{(a∗0 −

√
V c∗), (a0−

√
V c)}〉HB

3 (ν
#) (3.32)

locally uniformly inD.
Put c ≡ 〈a0/

√
V 〉HB

3 (ν
#) which is bounded (see (3.27)). Then

13(β,µ; ĉ#
3, ν

#) 6 13(β,µ; 〈a#
0/
√
V 〉HB

3 (ν
#), ν

#)

and estimates (3.31) and (3.32) give

06 inf
c∈C

13(β,µ; c#, ν#) 6 u

V
+ w

2V
〈{(a∗0 − 〈a∗0〉), (a0− 〈a0〉)}〉HB

3 (ν
#) (3.33)

where for short〈a#
0〉 ≡ 〈a#

0〉HB
3 (ν

#). Let δa#
0 ≡ a#

0−〈a#
0〉. Then, by the Harris inequality (see

[9, 14]) one obtains

1
2〈{δa∗0, δa0}〉HB

3 (ν
#) 6 (δa∗0, δa0)HB

3 (ν
#) +

β

12
〈[δa∗0, [HB

3 (µ, ν
#), δa0]] 〉HB

3 (ν
#). (3.34)

By condition (B) on the interaction and lemma 3.10 we have:

〈[δa∗0, [HB
3 (µ, ν

#), δa0]] 〉HB
3 (ν

#) =
〈
v(0)

V
N3 − µ+ 1

V

∑
k∈3∗

v(k)a∗k ak

〉
HB
3 (ν

#)

6 2v(0)g3(β, µ; ν#)− µ. (3.35)

Since by (2.6), (2.10) and (3.25) we have a uniform boundedness:g3(β, µ; ν#) < g0 for
each compactC0(µ < 0) ⊂ D and |ν| 6 r0, the estimate (3.33) in this compact set takes
the form:

06 inf
c∈C

13(β,µ; c#, ν#) 6 1

V
[ũ+ w(δa∗0, δa0)HB

3 (ν
#)]. (3.36)

Now we can proceed with the standard reasoning of the approximation Hamiltonian method
(see [9]). First we note that

(δa∗0, δa0)HB
3 (ν

#) =
1

β
∂ν∂νp3[HB

3 (ν
#)]. (3.37)

By the (canonical) gauge transformationa0→ a0eiϕ , ϕ = argν, one finds that in fact

p3[HB
3 (ν

#)] = pB3(β, µ; |ν| ≡ r).
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Then passing in (3.37) to polar coordinates(r, ϕ) we obtain:

(δa∗0, δa0)HB
3 (ν

#) =
1

4βr
∂r(r∂rp

B
3). (3.38)

Let c = |c|eiψ , ψ = argc. Then by (3.3), (3.4) one obtains

inf
c∈C

13(β,µ; c#, ν#) = inf
|c|,ψ

13(β, µ; |c|e±iψ, re±iϕ) = inf
|c|
1̂3(β, µ; |c|e±iϕ, r)

≡ inf
|c|
1̃3(r). (3.39)

Therefore, by (3.36)∫ R+ε

R

r inf
|c|
1̃3(r) dr 6 1

V

{
ũ
(R + ε)2− R2

2
+ w

4β
(r∂rp

B
3)|R+εR

}
(3.40)

for [R,R + ε] ⊂ [0, r0]. Note that by (3.27) we have

∂rp
B
3 = 2|〈a0/

√
V 〉HB

3 (ν
#)| 6 2g

1
2
0 (θ, µ) ∈ C0 ⊂ D, |ν| 6 r0. (3.41)

Therefore, (3.40) takes the form∫ R+ε

R

r inf
|c|
1̃3(r) dr 6 1

V

{
ũ
(R + ε)2− R2

2
+ w

2β
g

1
2
0 (2R + ε)

}
. (3.42)

Since by corollary 3.12 and remark 3.13∣∣∣∂r inf
|c|
1̃3(r)

∣∣∣ 6 2g
1
2
3 + 2|ĉ3| 6 2(g

1
2
0 +M)

for r ∈ [R,R + ε] we obtain:

inf
|c|
1̃3(R) 6 inf

|c|
1̃3(r)+ 2(r − R)(g

1
2
0 +M).

Hence,

inf
|c|
1̃3(R)

(R + ε)2− R2

2
6
∫ R+ε

R

r inf
|c|
1̃3(r) dr + 2(g

1
2
0 +M)

(
r3

3
− Rr

2

2

) ∣∣∣∣R+ε
R

.

Then by (3.42) we obtain

inf
|c|
1̃3(R) 6

1

V

{
ũ+ w

β
g

1
2
0 ε
−1

}
+ (g

1
2
0 +M)ε

R + 2
3ε

R + 1
2ε
. (3.43)

Note thatε > 0 is still arbitrary. Minimizing the right-hand side of (3.43) one obtains that
for largeV the optimal value ofε ∼ 1/

√
V . Hence, forV →∞ one gets from (3.43) the

asymptotic estimate

06 inf
c∈C

13(β,µ; c#, ν#) 6 δ3 ≡ constant
1√
V

(3.44)

valid for each compactC0 ⊂ D and |ν| 6 r0. One gets (3.30) for(θ, µ) ∈ D by extension
of (3.43) toµ = 0 by continuity. �

Corollary 3.15.Let (θ, µ) ∈ D. Then, if one considers the Bogoliubov approximation for
the statistical operatorW3

W3 = e−βH
B
3 (µ,ν

#)
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we have

lim
3

{
pB3(β, µ, ν

#)− sup
c∈C

pB3(β, µ; c#, ν#)
}
= 0 (3.45)

locally uniformly inD, where

pB3(β, µ; c#, ν#) ≡ 1

βV
ln TrF ′3 W3(c

#) (3.46)

|ν| 6 r0, r0 > 0, andW3(c
#) is defined by (2.24).

Proof. Using for calculation of TrF3(−) = TrF03⊗F ′3(−) a product-basis inF3, one gets
(cf definition 2.11)

TrF3(W3) > sup
{ψ ′n}n

∑
n

(ψ03(c)⊗ ψ ′n, e−βH
B
3 (µ,ν

#)ψ03(c)⊗ ψ ′n) ≡ TrF ′3 W3(c
#)

where{ψ ′n}n is an arbitrary orthonormal basis inF ′3. Now, wheneverψ03(c)⊗ψ ′n are in the
form-domain ofHB

3 (µ, ν
#), the Peierls inequality [3] gives (by definition ofHB

3 (µ, c
#, ν#),

see (2.24)) that

(ψ03(c)⊗ ψ ′n, e−βH
B
3 (µ,ν

#)ψ03(c)⊗ ψ ′n) > e−β(ψ
′
n,H

B
3 (c

#,µ,ν#)ψ ′n).

Therefore, one obtains

p̃B3(β, µ; c#, ν#) 6 pB3(β, µ; c#, ν#) 6 pB3(β, µ, ν#). (3.47)

From (3.47) we deduce by theorem 3.14 the thermodynamic limit (3.45). �

Corollary 3.16.Since the variational pressurẽpB3(β, µ; c#, ν#) is known in the explicit form
(see (2.27), (2.28) and (3.3)):

p̃B3(β, µ; c#, ν#) = p̃B3(β, µ; c#)+ (νc + νc) (3.48)

the following thermodynamic limits exist:

p̃B(β, µ; c#, ν#) = lim
3
p̃B3(β, µ; c#, ν#)

p̃B(β, µ; ĉ#(β, µ; ν#), ν#) = lim
3

[
sup
c∈C

p̃B3(β, µ; c#, ν#)
]
= sup

c∈C
p̃B(β, µ; c#, ν#).

(3.49)

Then by virtue of the locally uniform estimate (3.44) and of extension by continuity to
µ = 0 we get

pB(β, µ; ν#) = lim
3
p3[HB

3 (ν
#)] = sup

c∈C
p̃B(β, µ; c#, ν#). (3.50)

For (θ, µ) ∈ D, |ν| 6 r0 and (cf (3.1)) the limit|ν| → 0:

pB(β, µ) = sup
c∈C

p̃B(β, µ; c#). (3.51)

Corollary 3.17. Inequalities (2.25) and (2.30) give

pI (β, µ) 6 lim
3

[
sup
c∈C

p̃B3(β, µ; c#)
]
6 pB(β, µ).

Then definitions (2.36), (2.42) implyD0 ⊆ D, whereas (3.30) implies thatD0 = D, which
proves (3.2). Hence, we have

pB(β, µ) = sup
c∈C

p̃B(β, µ; c#) for (θ, µ) ∈ Q\∂D. (3.52)
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Figure 3. Discontinuous behaviour of the Bose condensate density|ĉ(β, µ)|2 = ρB0 (θ
−1, µ)

for the Bogoliubov WIBG:ρB0 > 0 in domainD = D0 andρB0 = 0 in the rest of the stability
domainQ\D.

Remark 3.18.Since (2.28) implies that

p̃B3(β, µ; c# = 0) = pI3(β, µ) (3.53)

by (2.36), (2.46) and (3.2) we get

D0 = {(θ, µ) : |ĉ(β, µ; ν)| > 0} = {(θ, µ) : ρB0 (β, µ) > 0} = D. (3.54)

Therefore, (see remark 2.18) the condition (C) is sufficient and necessary forD 6= {∅}.

4. Thermodynamics of the weakly imperfect Bose gas

Since the pressurẽpB3 (2.28) and lim3 p̃B3 = p̃B are known explicitly:

p̃B(β, µ; c#, ν#) = 1

β(2π)3

∫
R3

d3k ln(1− e−βEk(|c|
2))−1− 1

β(2π)3

∫
R3

d3k [Ek(|c|2)

−fk(|c|2)] + µ|c|2− 1
2v(0)|c|4+ (νc + νc) (4.1)

theorem 3.14 and corollaries 3.16 and 3.17 give an exact solution of the model (1.4) on the
level of thermodynamics. Therefore, (3.52) gives access to the thermodynamic properties
of the WIBG for all (θ, µ) ∈ Q except the line of transitions∂D (see figures 1 and 3).

The aim of this section is to discuss thermodynamic properties of the model (1.4) and
in particular the Bose condensate which appears in domainD. The first statement concerns
the gauge symmetry-breaking in domainD.

Theorem 4.1.Let D 6= {∅}. Then quasi-averages

lim
{ν→0:argν=ϕ}

lim
3
〈a#

0/
√
V 〉HB

3 (ν
#) = e±iϕ|ĉ(β, µ)| =

{ 6= 0, (θ, µ) ∈ D
= 0, (θ, µ) ∈ Q\D

}
. (4.2)

Proof. As in the proof of theorem 3.14 by the gauge transformation

Uϕa0U∗ϕ = a0e−iϕ = ã0 ϕ = argν
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we get

H̃ B
3 (µ, r) = UϕHB

3 (µ, ν
#)U∗ϕ = H̃ B

3 − µÑ3 −
√
V r(ã0+ ã∗0)

p3[HB
3 (ν

#)] = p3[UϕHB
3 (µ, ν

#)U∗ϕ ] = pB3(β, µ; r = |ν|).
(4.3)

By virtue of

0= 〈[H̃B
3 (µ, r), Ñ3]〉H̃B

3 (r)
= r
√
V 〈ã0− ã∗0〉H̃B

3 (r)

and (cf (3.10))

06 〈[Ñ3, [H̃B
3 (µ, r), Ñ3]] 〉H̃B

3 (r)
= r
√
V 〈ã0+ ã∗0〉H̃B

3 (r)

we obtain

〈ã0〉H̃B
3 (r)
= 〈ã∗0〉H̃B

3 (r)
> 0. (4.4)

Since (cf (3.9))

∂2
r p

B
3(β, µ; r) = β({(ã0+ ã∗0)− 〈ã0+ ã∗0〉H̃B

3 (r)
}

{(ã0+ ã∗0)− 〈ã0+ ã∗0〉H̃B
3 (r)
})H̃B

3 (r)
> 0

(4.5)

by theorem 3.14 and corollary 3.16 the sequence of the convex (forr > 0) functions
{pB3(β, µ; r)}3 converges to the (convex function)

p̂B(β, µ; r) ≡ sup
c∈C

p̃B(β, µ; c#, ν#) = sup
|c|>0
ψ=argc

p̃B(β, µ; |c|e±iψ, |ν|e±iϕ)

= p̃B(β, µ; |ĉ(β, µ; r)|e±iϕ, |ν|e±iϕ) (4.6)

see (3.38) and (4.1), locally uniformly inD× [0, r0]. By explicit calculations one finds that
the derivatives

06 ∂r p̂B(β, µ; r) = 2|ĉ(β, µ; r)| 6 C1

06 ∂2
r p̂

B(β, µ; r) = 2∂r |ĉ(β, µ; r)| 6 C2

(4.7)

are continuous and bounded inD × [0, r0]. Therefore, by Griffiths’ lemma [8]

lim
3
∂rp3[H̃ B

3 (r)] = lim
3

〈
ã0+ ã∗0√

V

〉
H̃B
3 (r)

= 2|ĉ(β, µ; r)|

or by (4.4),

lim
3
〈ã0/
√
V 〉H̃B

3 (r)
= |ĉ(β, µ; r)|

lim
3
〈ã∗0/
√
V 〉H̃B

3 (r)
= |ĉ(β, µ; r)|.

(4.8)

Returning in (4.8) back to original creation/annihilation operators, one obtains

lim
3
〈a0/
√
V 〉HB

3 (ν
#) = e+iϕ|ĉ(β, µ; r)|

lim
3
〈a∗0/
√
V 〉HB

3 (ν
#) = e−iϕ|ĉ(β, µ; r)|.

(4.9)

Then the first part of the statement (4.2) follows from (4.9) and the continuity of the solution
ĉ(β, µ; r) at r = 0, while the second part follows from (3.54). �
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Corollary 4.2. Notice that by the gauge invariance〈
a#

0√
V

〉
HB
3(ν#=0)

= 0. (4.10)

Therefore, we have the gauge symmetry-breaking:

lim
ν→0

lim
3

〈
a#

0√
V

〉
HB
3 (ν

#)

6= lim
3

lim
ν→0

〈
a#

0√
V

〉
HB
3 (ν

#)

(4.11)

as soon as the Bose condensationρB0 (β, µ) 6= 0.

Corollary 4.3. Since by (4.5), (4.7)

∂2
r

(
inf
|c|
1̃3(r)

)
= ∂2

r (p
B
3(β, µ; r)− p̂B(β, µ; r)) > −C2

the Kolmogorov lemma [15] implies that∣∣∣∣∣
〈
ã0√
V

〉
H̃B
3 (r)

− |ĉ3(β, µ; r)|
∣∣∣∣∣ 6 2

√
δ3C2 (4.12)

for r ∈ [l3, r0− l3], l3 = 2
√
δ3/C2 (see (3.44) and (4.8)).

Note that the Cauchy–Shwartz inequality gives〈
a∗0√
V

〉
HB
3 (ν

#)

〈
a0√
V

〉
HB
3 (ν

#)

6
〈
a∗0a0

V

〉
HB
3(ν#)

.

Hence, by (2.45) and (4.2) one gets

|ĉ3(β, µ)|2 6 lim
ν→0

lim
3

〈
a∗0a0

V

〉
HB
3 (ν

#)

= ρB0 (β, µ) (4.13)

which is in coherence with the definitions of domainsD0 andD (cf theorem 2.16 and
corollary 2.17). To prove equality in (4.13) we proceed as follows.

Theorem 4.4.Let

HB
3,α = HB

3 + αa∗0a0

HB
3,α(ν

#) = HB
3,α −

√
V (νa∗0 + νa0)

(4.14)

for α ∈ R1. Then

pBα (β, µ; ν#) = lim
3
p3[HB

3,α(ν
#)] = lim

3

[
sup
c∈C

p̃B3,α(β, µ; c#, ν#)
]

(4.15)

for |ν| 6 r0, r0 > 0 and(θ, µ) ∈ Q\∂Dα where domain

Dα ≡ {(θ, µ) : pBα (β, µ; ν# = 0) > pI (β, µ)}. (4.16)

Remark 4.5.SinceHB

3,α= 1
2ϕ(0)
= Ĥ B

3 (see (2.47)), by theorem 2.20 we find thatDα= 1
2ϕ(0)
=

{∅}.
Our reasoning below is a translation of some results of sections 2 and 3 to the perturbed

HamiltonianHB
3,α for smallα.

Lemma 4.6.If potential v(k) satisfies (A)–(C), then

D0α ≡
{
(θ, µ) : sup

c∈C
p̃Bα (β, µ; c#) > pI (β, µ)

}
6= {∅}. (4.17)

for α < −µ0, whereµ0 is defined by lemma 2.15.
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Proof. Since theη3,α(µ; x) for the Hamiltonian (4.14) (cf (2.28)) has the form

η3,(µ; x) = − 1

2V

∑
k∈3∗,k 6=0

(Ek − fk)+ (µ− α)x − 1

2
v(0)x2 (4.18)

one can follow the line of reasoning in the proofs of lemma 2.15 and theorem 2.16 to find
(4.17) forµ 6 0 such that(µ−α) > µ0. Therefore, the value ofµ0+α must be negative.�

By continuity from (4.18) with respect toα it is clear that limα→0D0α = D0. Now we
turn to the proof of theorem 4.4.

Proof of theorem 4.4.(a) Since the Bogoliubov approximation (2.24) gives the estimate of
the pressurep3[HB

3,α(ν
#)] from below (see proposition 2.12) as:

sup
c∈C

p̃B3,α(β, µ; c#, ν#) 6 p3[HB
3,α(ν

#)]

by the Bogoliubov inequality we get (cf (3.4)):

06 13,α(β, µ; c#, ν#) ≡ p3[HB
3,α(ν

#)] − p̃B3,α(β, µ; c#, ν#)

6 1

V
〈HB

3,α(ĉ
#, µ, ν#)−HB

3,α(µ, ν
#)〉HB

3,α(ν
#). (4.19)

(b) For operatorsA# ≡ a#
0−
√
V c# and for a Taylor expansion ofHB

3,α(ĉ
#, µ, ν#) around

a#
0 one obtains the estimate

06 inf
c∈C

13,α(β, µ; c#, ν#) = 13,α(β, µ; ĉ#
3,α(β, µ; ν#), ν#)

6 uα + wα
2
〈{(a∗0 −

√
V c), (a0−

√
V c)}〉HB

3 (ν
#) (4.20)

by repeating verbatim the arguments developed from remark 3.2 through to remark 3.13.
The only difference with the caseα = 0 comes from

[A, [HB
3,α(µ, ν

#), A∗]] = [A, [HB
3 (µ, ν

#), A∗]] + α
cf (3.35), and the note that limα→0 uα = u and limα→0wα = w.

(c) Putc# ≡ 〈a#
0/
√
V 〉HB

3,α(ν
#) in the left-hand side of (4.20). The same line of reasoning

as in theorem 3.14 gives the asymptotic estimate

06 inf
c∈C

13,α(β, µ; c#, ν#) 6 δ3,α ≡ constant(α)
1√
V

(4.21)

valid for (θ, µ) ∈ Q\∂Dα, |α| < −µ0, and |ν| 6 r0 which ensures the proof of (4.15) for
Dα 6= {∅}.

Corollary 4.7. Since

∂2
αp3[HB

3,α(ν
#)] = β

V
((a∗0a0− 〈a∗0a0〉HB

3,α(ν
#)), (a

∗
0a0− 〈a∗0a0〉HB

3,α(ν
#)))HB

3,α(ν
#) > 0

functions {p3[HB
3,α(ν

# = 0)]}3 are convex forα ∈ R1. The same is obviously true (cf
(4.1), (4.14) and (4.15)) for the limit

lim
3
p3[HB

3,α(ν
# = 0)] = sup

c∈C
p̃Bα (β, µ; c#, ν# = 0) = p̃Bα (β, µ; ĉ#

α(β, µ),0)

= p̃B(β, µ; ĉ#
α(β, µ),0)− α|ĉα(β, µ)|2. (4.22)
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By explicit calculations one finds that

∂αp̃
B
α (β, µ; ĉ#

α(β, µ),0) = −|ĉα(β, µ)|2 < constant (4.23)

for (θ, µ) ∈ Q and |α| 6 −µ0. Therefore, by Griffiths’ lemma [8] we obtain:

lim
3
∂αp3[HB

3,α(ν
# = 0)] = lim

3

(
−
〈
a∗0a0

V

〉
HB
3,α(ν

#=0)

)
= −|ĉα(β, µ)|2. (4.24)

Corollary 4.8. By the continuity inα→ 0, equations (4.2) and (4.24) imply that

ρB0 (β, µ) = lim
3

〈
a∗0a0

V

〉
HB
3

= lim
3

〈
a∗0√
V

〉
HB
3

lim
3

〈
a0√
V

〉
HB
3

= |ĉ(β, µ)|2. (4.25)

We conclude this section by analysis of the Bose condensateρB0 (β, µ) behaviour. By
virtue of (4.25) it reduces to the analysis of the behaviour of|ĉ(β, µ)| which corresponds
to the supc∈C of the trial pressure (4.1):

p̃B(β, µ; c#, ν# = 0) = ξ(β, µ; x ≡ |c|2)+ η(µ; x ≡ |c|2) ≡ p̃B(β, µ; c#) (4.26)

where (cf. (2.28) and (2.29))

ξ(β, µ; x) = 1

(2π)3β

∫
R3

d3k ln(1− e−βEk )−1

η(µ; x) = 1

2(2π)3

∫
R3

d3k (fk − Ek)+ µx − 1
2v(0)x

2

fk = εk − µ+ x[v(0)+ v(k)] hk = xv(k) Ek =
√
f 2
k − h2

k.

(4.27)

Below we collect some properties of the trial pressure (4.26).
(1) Forµ 6 0 the function (4.26) is differentiable with respect tox = |c|2 > 0 and

lim
|c|2→∞

p̃B(β, µ; c#) = −∞. (4.28)

Hence, supx>0(ξ + η)(β, µ; x) is attained either atx = 0, or at a positive solution of the
equation

0= ∂x(ξ + η)(β, µ; x) = 1

(2π)3

∫
R3

d3k (1− eβEk )−1∂xEk

− 1

2(2π)3

∫
R3

d3k (∂xEk − ∂xfk)+ µ− xv(0) (4.29)

—see figure 2.
(2) By definitions (4.27) and the properties (A) and (B) of the potentialv(k) one obtains

∂xfk = v(0)+ v(k) ∂xEk = E−1
k (fkv(0)+ (fk − hk)v(k)) > 0

for µ 6 0, x > 0 and anyk ∈ R3. Therefore, by (4.29) we have

∂xp̃
B(β, µ; c# = 0) 6 ∂xη(µ; x = 0) ≡ ∂xp̃B(β = ∞, µ; c# = 0) = µ. (4.30)

(3) By explicit calculation one finds that∂µ∂xη(µ; x) > 0 for µ 6 0 andx > 0. Hence

∂xη(µ; x) 6 ∂xη(µ = 0; x) (4.31)

and∂xη(µ = 0; x) is a concave function of(0,∞).
(4) Now, let potentialv(k) satisfy condition (C). Then

∂2
xη(µ = 0; x) = −v(0)+ 1

2(2π)3

∫
R3

[v(k)]2

εk
d3k > 0 (4.32)
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Sinceη(µ = 0; x = 0) = 0, (4.32) means that the trial pressure

p̃B(β = ∞, µ; c#) = η(µ = 0; x)
attains supx>0 for x̂(θ = 0, µ = 0) > 0, and, by continuity for(θ > 0, µ 6 0), the domain

D0 = {(θ, µ) : x̂(θ, µ) > 0} 6= {∅}
—see lemma 2.15, theorem 2.16 and figure 2.

(5) Fix µ ∈ D0 andθ = 0. Then, according to (4.30),

∂xp̃
B(β = ∞, µ; c# = 0) = µ 6 0.

But ∂2
x p̃

B(β = ∞, µ; c#, ν# = 0) > 0 ensures|ĉ(β = ∞, µ)|2 = x̂(θ = 0, µ) ≡ x(µ) > 0
(see figure 2), i.e.

p̃B(β = ∞, µ; c# = 0) < p̃B(β = ∞, µ; |ĉ(β = ∞, µ)|2). (4.33)

(6) Since∂xξ(β, µ; x) < 0 (see (4.29)) and

∂θ∂xξ(β, µ; x) = (−1)

(2π)3

∫
R3

d3k
β2EkeβEk

(1− eβEk )2
∂xEk < 0 (4.34)

there is a critical temperatureθ0(µ) (cf theorem 2.16) such that forµ ∈ D0 andθ = θ0(µ),
one obtains:

sup
x>0

[ξ(β0(µ), µ; x)+ η(µ; x)] = ξ(β0(µ), µ; 0)+ η(µ; 0)

= ξ(β0(µ), µ; x̂(θ0(µ), µ) > 0)+ η(µ; x̂(θ0(µ), µ) > 0) (4.35)

whereas forθ < θ0(µ) the supremum is attained atx = x̂(θ, µ) > 0 and forθ > θ0(µ)

it ‘jumps’ to x̂(θ, µ) = 0 (see figures 2 and 3). Therefore, we have proved the following
statement.

Theorem 4.9.If interaction potentialv(k) satisfies conditions (A)–(C), then domainD 6= {∅}
and the Bose condensate undergo a jump on the boundary∂D:

ρB0 (θ
−1, µ) =

{
> 0, (θ, µ) ∈ D
= 0, (θ, µ) ∈ Q\D

}
(4.36)

where by definition:ρB0 (θ
−1, µ = 0) ≡ limµ→0− ρ

B
0 (θ

−1, µ) (extension by continuity).

Behaviour of the trail pressure (4.26) and the condensate (4.36) are illustrated by
figures 2 and 3.

5. Concluding remarks

This paper has presented an exact solution of the Bogoliubov WIBG model (1.4) originally
conceived as a starting point for the explanation of superfluity [1, 2].

(i) We have shown that the thermodynamic properties of the model drastically depend
on the interaction potential. We found that it isnon-diagonal part of interactionthat makes
the model non-trivial (i.e. non-equivalent to the IBG)—theorems 2.16 and 3.14.

Therefore, we have answered the question formulated in [5] by showing that its solution
depends on the potential. In particular we established that condition (C) (2.33) is necessary
and sufficient for the WIBG benon-equivalentto the IBG in the domain of stability
Q = {θ > 0} × {µ 6 0}.

(ii) We have shown that the Bogoliubov approximation for the WIBG isexact in the
sense of theorem 3.14. It enables explicit calculation of the pressurepB(β, µ). On the
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other hand this exact solution is rather different from the result of the Bogoliubov treatment
[1, 2] of the Hamiltonian (1.4). This is because it involves additional hypotheses which are
equivalent to modifications of the original Bogoliubov Hamiltonian (1.4) (see [10, 11, 16, 17]
and references therein).

(iii) We have found that for interactions satisfying conditions (A)–(C) there is a domain
(figure 3)

D = {(θ, µ) : µ0 < µ 6 0, 06 θ < θ0(µ)} ⊂ Q
where the pressurepB3(β, µ) 6= pI (β, µ). We have shown (theorem 2.20) that in fact

D = {(θ, µ) : ρB0 (β, µ) 6= 0}
whereρB0 (β, µ) is the density of thek = 0 mode Bose condensate in the Bogoliubov model.

(iv) It was shown (theorem 4.1) that the gauge symmetry is broken inD and thatρB0
changes its value on∂D from ρB0 = 0 to ρB0 6= 0 discontinuously (theorem 4.9).

(v) Moreover, the HamiltonianHB
3 (ĉ

#
3,µ), which is the thermodynamic equivalent to

HB
3 (µ) (corollary 3.16), has agap in the spectrum for limk→0Ek in domainD, i.e. in

the presence of the Bose condensate (see (4.27)). This again indicates that the original
Bogoliubov Hamiltonian (1.4) has been highly modified [1, 2, 5, 10, 11, 16] since its
original invention for the description of superfluidity. The physical reason of the difference
between theexact solutionof the modelHB

3 and the Bogoliubov theory [1, 2] is in the
different treatment ofquantum fluctuations.

It is the quantum fluctuations of the operatorsa#
0/
√
V that imply aneffective attraction

between bosons withk = 0 in WIBG [12]. This attraction is the cause of two phenomena:
instability of the WIBG forµ > 0 (proposition 1.2) known since [5], and anon-conventional
condensation of bosons in thek = 0 mode for negativeµ when theeffective attraction
between themdominatesa direct repulsion in (1.6) (see condition (C) (2.33) (or (24) in
[12]) and theorems 2.16 and 2.20). By contrast, the Bogoliubov treatment of his model
HB
3 (1.4) was based on the appoximationa#

0/
√
V → c# (2.24), i.e. on theelimination

of the quantum fluctuations which makes the HamiltonianHB
3 (c

#, µ) (2.27) stable for a
larger chemical potential domain:µ 6 v(0)|c|2 (i.e. even for 0< µ 6 v(0)|c|2 where
the model (1.4)does not exist!). To make this treatmentself-consistentand to gain a well
known gapless spectrum, Bogoliubov’s judicious choice of the parameter|c|2 comes from
the maximization of only thenon-fluctuating‘Landau’s part’ of the trial pressure (2.28),
i.e. of µx − 1

2v(0)x
2 (for discussions see [16–18]). This choice bolsters the assertion of

elimination of the quantum fluctuations for the Bogoliubov theory of superfluidity, but at
the same time creates great debate about the role of the quantum fluctuations in the full
Hamiltonian (1.4) in the presence of the condensate (as with the Hugenholtz–Pines theorem
and Gavoret–Nozières analysis [19]) as well as mathematical papers about different model
Hamiltonians with diagonal [20] andnon-diagonalboson interactions [10, 11, 21] containing
rigorous results on the Bose condensation in these interacting systems.

We have given the exact solution of the simplest non-diagonal modelHB
3 (1.4) invented

by Bogoliubov for WIBG. Instead of Bogoliubov treatment we considered the modelHB
3 of

WIBG rigorously, without anya priori ansatz or approximations. Our results (i)–(v) show
that quantum fluctuations of operatorsa#

0/
√
V make the properties of WIBG drastically

different from the Bogoliubov treatment. This evidently means that the Bogoliubov theory
of WIBG is somethingmore that a simple study of the modelHB

3 (c
#).

For example, our rigorous study of WIBG shows that the Bose condensate implies a gap
in the excitation spectrum (see (v)) in contrast to theaim of the Bogoliubov theory. In fact,
the nature of this gap is well known. The interaction in thetruncatedHamiltonianHB

3 (in



Exact solution of the Bogoliubov Hamiltonian 9401

contrast to (1.2)) isnon-local. This violates local gauge invariance and as a consequence
the Hugenholtz–Pines–Gavoret–Nozières analysis (see an instructive discussion in [18] and
the literature quoted there).

It may seem aparadox (cf the above remark about fluctuations) that the Bogoliubov
approximation isexact (see (ii)) for calculations of the thermodynamic properties of the
WIBG. In fact the quantum fluctuations (e.g. in the theorem 3.14) are not forgotten. They
are responsible for the definition of domainD where the modelHB

3 is stable and they define
(in addition to the ‘Landau part’) a non-trivial ‘fluctuating part’ of the trial pressure (2.28).

Notice that the Bose condensationρB0 (β, µ) in the WIBG forµ 6 0 (see (iii)) is due
to effective attraction of the bosons in the modek = 0 (see condition (C), (2.33) and
theorem 2.20). We call itnon-conventional(or dynamical condensation) in contrast to the
conventionalBose condensation which is due to a simplesaturationof occupation numbers
in modesk 6= 0 [12]. The above study was done in the grand canonical ensemble by fixing
temperatureθ and chemical potentialµ. Since the particle densityρB(β, µ) = ∂µpB(β, µ)
is bounded forµ → 0− (see (3.25), (3.26) and theorem 3.14), for densitiesρ > ρB(β, 0)
one has to anticipate aconventionalBose condensation due to saturation of the density
ρB . For θ < θ0 (µ = 0) this conventionalcondensation occursafter the non-conventional
condensationρB0 (β, µ). We return to these two scenarios of condensation elsewhere.
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Appendix A. Proof of theorem 3.7

(1) Notice that the pressurep3
[
HB
3 (ν

#)
]

is bounded from below and from above uniformly
on any compactK ⊂ Q× {ν : |ν| < r0} see (2.25) and (3.20). Since the family

{p3[HB
3 (ν

#)] = pB3(β, µ; ν#)}3⊂R3

consists of convex functions of the chemical potentialµ < 0, by compactness argument
(see e.g. ch II, section 10, [22]) there is a subsequence{pB3j (β, µ; ν#)}∞j=1 which converges

uniformly inµ on any compactCµ ⊂ R1
− and fixedβ, ν to the convex functionpB(β, µ; ν#),

i.e. converges locally uniformly inR1
−.

(2) The grand-canonical pressure has the form:

pB3(β, µ; ν#) = 1

βV
ln

{ ∞∑
N=0

eβV (µ
N
V
−f B3 (β, NV ;ν#))

}
= (βV )−1 ln4B3(β, µ; ν#) (A.1)

where

f B3 (β, ρ = N/V ; ν#) = − 1

βV
TrFN e−βH

B
3 (ν

#) ρ > 0 (A.2)

is the free-energy density. By conditions of the theorem 3.7(θ, µ) ∈ D, which corresponds
to theone-phase domain: ρB0 > 0. Consequently,{∂µpB3 = 〈NV 〉HB

3 (ν
#) > 0}3 and∂µpB =

(the Griffiths lemma)= lim3 ∂µp
B
3 are continuous functions ofµ ∈ [µ0(β)+ ε, 0), ε > 0.

The ∂µpB can be extended toµ = 0 by continuity. Then by a Tauberian theorem proved
in [23] the existence of the limitpB(β, µ; ν#) entails the existence of the limit

f B(β, ρ; ν#) = lim
3
f B3 (β, ρ; ν#) (A.3)
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which is uniform on the interval

ρ ∈ Iε1,2 = [∂µp
B(β, µ0(β)+ ε1; ν#), ∂µp

B(β,−ε2; ν#)] ε1,2 > 0. (A.4)

In fact on this interval the limit (A.3) coincides with its convex envelope (theLegendre
transformation):

f̃ B(β, ρ; ν#) = C.E. {f B(β, ρ; ν#)} = sup
µ60
{µρ − pB(β, µ; ν#)}. (A.5)

(3) By virtue of (A.3) and (A.5), for|3j | large enough functions{f B3j (β, ρ; ν#)}∞j=1 are
strictly convex onIε1,2 and forµ ∈ [µ0(β)+ ε1, 0]

sup
N
V

(
µ
N

V
− f B3

(
β,
N

V
; ν#

))
= µρ3 − f B3 (β, ρ3; ν#) ≡ −F3(β,µ; ρ3, ν#) (A.6)

ρ3(µ) ∈ Iε1,2. Then for|N
V
− ρ3| > ξ > 0 one gets

F3

(
β,µ; N

V
, ν#

)
> F3(β,µ; ρ3, ν#)+ γ ≡ F3 + γ γ > 0 (A.7)

and for |N
V
− ρ3| < ξ ′ < ξ one has

F3 6 F3
(
β,µ; N

V
, ν#

)
6 F3 + γ

2
. (A.8)

By (A.1) one gets that forN
V
− ρ3 > ξ there are two constantsa1,2 > 0 such that

F3

(
β,µ; N

V
, ν#

)
> a1+ a2

(
N

V
− ρ3 − ξ

)
. (A.9)

(4) (Large-deviation principle for the particle density). By standard reasoning (see e.g.
[24, 25]) one gets from the grand-canonical distribution of particles and (A.7)–(A.9) that

p3,I = P3
{

06 N

V
< ρ3 − ξ

}
= (4B3)−1

∑
06N<V (ρ3−ξ)

e−βVF3(β,µ;
N
V
,ν#)

6 V (ρ3 − ξ)e−βV (F3+γ ) (A.10)

p3,II = P3
{
ρ3 − ξ 6

N

V
< ρ3 + ξ

}
> (4B3)−1

∑
V (ρ3−ξ ′)6N<V (ρ3+ξ ′)

e−βVF3(β,µ;
N
V
,ν#)

> 2(4B3)
−1ξ ′V e−βV (F3+

γ

2 ) (A.11)

p3,III = P3
{
N

V
> ρ3 + ξ

}
6 (4B3)−1

∑
N>V (ρ3+ξ)

e−βV [a1+a2(
N
V
−ρ3−ξ)] . (A.12)

Sincep3,I + p3,II + p3,III = 1, these estimates imply that

lim
3
p3,II = 1 (A.13)

for any ξ > 0.
(5) Now we can apply the large-deviation principle for the particle density in domain

D to obtain (3.19). Using the relation (3.35) forA# one readily gets

〈A∗[A, [HB
3 (µ, ν

#), A∗]]A〉HB
3 (ν

#) 6 2v(0)

〈
A∗
N3

V
A

〉
HB
3 (ν

#)

− µ〈A∗A〉HB
3 (ν

#). (A.14)

Since 〈
A∗
N3

V
A

〉
HB
3 (ν

#)

=
〈(
N3

V
− ρ3

)
A∗A

〉
HB
3 (ν

#)

+ ρ3〈A∗A〉HB
3 (ν

#) (A.15)
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we have to estimate from above the first term in the left-hand side of (A.15). To this end
we follow (A.10)–(A.13):

(I)

(4B3)
−1

∑
06N<V (ρ3−ξ)

(
N

V
− ρ3

)
e−βVF3〈A∗A〉HB

3 (ν
#)(β,N; ν#) 6 0. (A.16)

(II)

(4B3)
−1

∑
V (ρ3−ξ)6N<V (ρ3+ξ)

eβµN
(
N

V
− ρ3

)
TrFN (e

−βHB
3 (ν

#)A∗A)

6 2ξ(4B3)
−1
∞∑
N=0

eβµN TrFN (e
−βHB

3 (ν
#)A∗A) = ξ〈A∗A〉HB

3 (ν
#)(β, µ; ν#). (A.17)

(III)

(4B3)
−1

∑
N>V (ρ3+ξ)

(
N

V
− ρ3

)
e−βVF3〈A∗A〉HB

3 (ν
#)(β,N; ν#)

6 (4B3)−1
∑

N>V (ρ3+ξ)

(
N

V
− ρ3

)
e−βV [a1+a2(

N
V
−ρ3−ξ)]2(N + |c|2V )

= 2(4B3)
−1

∑
N>V (ρ3+ξ)

(
N

V
− ρ3

)
(N − V ρ3)e−βV a1e−βa2(N−V (ρ3+ξ))

+2(4B3)
−1V (ρ3 + |c|2)e−βV a1

∑
N>V (ρ3+ξ)

e−βa2(N−V (ρ3+ξ))

= p3,II (ξ ′V 2)−1e−βV
γ

2

∑
N>V (ρ3+ξ)

(N − V ρ3)2e−βa2(N−V (ρ3+ξ))

+p3,IIV −1(ρ3 + |c|2)e−βV
γ

2

∑
N>V (ρ3+ξ)

e−βa2(N−V (ρ3+ξ)) 6 constant e−βV
γ

2 .

(A.18)

Combining (A.16)–(A.18) with (A.14) and (A.15) we find that for any compactCµ ⊂
(µ0(β), 0), |ν| 6 r0 and compactCβ ⊂ R1

+ one has

〈A∗[A, [HB
3 (µ, ν

#), A∗]]A〉HB
3 (ν

#) 6 a〈A∗A〉HB
3 (ν

#) + b (A.19)

for positive boundeda, b which depend onCµ, Cβ , and r0, i.e. for a, b locally bounded
in D.
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